首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Trajectory stabilization of a model car via fuzzy control   总被引:3,自引:0,他引:3  
This paper deals with trajectory stabilization of a computer simulated model car via fuzzy control. Stability conditions of fuzzy systems are given in accordance with the definition of stability in the sense of Lyapunov. First, we approximate a computer simulated model car, whose dynamics is nonlinear, by T-S (Takagi and Sugeno) fuzzy model. Fuzzy control rules, which guarantee stability of the control system under a condition, are derived from the approximated fuzzy model. The simulation results show that the fuzzy control rules effectively realize trajectory stabilization of the model car along a given reference trajectory from all initial positions under a condition and the dynamics of the approximated fuzzy model agrees well with that of the model car.  相似文献   

2.
Evolving fuzzy rule based controllers using genetic algorithms   总被引:9,自引:0,他引:9  
The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS 1 are reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic routing in computer networks) is also described and experimental results are presented.  相似文献   

3.
This paper presents the design scheme of the indirect adaptive fuzzy observer and controller based on the interval type-2 (IT2) T-S fuzzy model. The nonlinear systems can be well approximated by IT2 T-S fuzzy model, in which the fuzzy rules’ antecedents are interval type-2 fuzzy sets and consequents are linear state equations. The proposed IT2 T-S fuzzy model is a combination of IT2 fuzzy system and T-S fuzzy model, and also inherits the benefits of type-2 fuzzy logic systems, which is able to directly handle uncertainties and can minimize the effects of uncertainties in rule-based fuzzy system. These characteristics can improve the accuracy of the system modeling and reduce the number of system rules. The proposed method using feedback control, adaptive laws, and on-line object parameters are adjusted to ensure observation error bounded. In addition, using Lyapunov synthesis approach and Lipschitz condition, the stability analysis is conducted. The simulation results show that the proposed method can handle unpredicted disturbance and data uncertainties very well in advantage of the effectiveness of observation and control.  相似文献   

4.
A kind of modelling method for fuzzy control systems is first proposed here, which is called modelling method based on fuzzy inference (MMFI). It should be regarded as the third modelling method that is different from two well-known modelling methods, that is, the first modelling method, mechanism modelling method (MMM), and the second modelling method, system identification modelling method (SIMM). This method can, based on the interpolation mechanism on fuzzy logic system, transfer a group of fuzzy inference rules describing a practice system into a kind of nonlinear differential equation with variable coefficients, called HX equations, so that the mathematical model of the system can be obtained. This means that we solve the difficult problem of how to get a model represented as differential equations on a complicated or fuzzy control system.  相似文献   

5.
The optimality of a fuzzy logic alternative to the usual treatment of uncertainties in a scheduling system using probability theory is examined formally. Fuzzy scheduling techniques proposed in the literature either fuzzify directly the existing scheduling rules, or solve mathematical programming problems to determine the optimal schedules. In the former method, the fuzzy optimality for the optimal scheduling rules is usually not justified but still assumed. In this paper, the necessary conditions for fuzzy optimality are defined, and fuzzy counterparts of some of the well-known scheduling rules such as shortest processing time (SPT) and earliest due date (EDD) are developed.  相似文献   

6.
The use of fuzzy logic has, in the last twenty years, become standard practice in the field of control. The reason lies in the fuzzy logic’s ability to relatively quickly transfer uncertain experience and knowledge about the observed object’s behaviour into the process of decision making. Nevertheless, one of the biggest problems that arises when using a fuzzy approach is the large number of fuzzy rules that have to be processed in order to produce one decision (i.e. one control output). The number of rules in a fuzzy controller primarily originates from the number of input variables that are entering the decision process and one possible solution for decreasing it is to use the method of decomposition. Its main goal is to implement the equivalent control functionality with a hierarchy of simpler fuzzy controllers. Their main characteristic is a lower number of input variables, which as a consequence leads to a smaller number of fuzzy rules. In our paper we apply the decomposition approach to the classical complex control case of the Truck-and-Trailer (T&T) reverse parking control problem. In such cases the implementation of control using only one fuzzy controller is very complex and the existing solutions, in some details, even deviate from the classical fuzzy approach. Our solution is, on the other hand, based only on the uncertain knowledge about the behaviour of the T&T driver and the results achieved are even better than those achieved by using the existing solutions.  相似文献   

7.
We describe a system for implementing fuzzy logic controllers using a neural network. A significant aspect of this system is that the linguistic values associated with the fuzzy control rules can be general concave continuous fuzzy subsets. By using structures suggested by the fuzzy logic framework, we simplify the learning requirements. On the other hand the adaptive aspect of the neural framework allows for the necessary learning.  相似文献   

8.
It has been demonstrated that type-2 fuzzy logic systems are much more powerful tools than ordinary (type-1) fuzzy logic systems to represent highly nonlinear and/or uncertain systems. As a consequence, type-2 fuzzy logic systems have been applied in various areas especially in control system design and modelling. In this study, an exact inversion methodology is developed for decomposable interval type-2 fuzzy logic system. In this context, the decomposition property is extended and generalized to interval type-2 fuzzy logic sets. Based on this property, the interval type-2 fuzzy logic system is decomposed into several interval type-2 fuzzy logic subsystems under a certain condition on the input space of the fuzzy logic system. Then, the analytical formulation of the inverse interval type-2 fuzzy logic subsystem output is explicitly driven for certain switching points of the Karnik–Mendel type reduction method. The proposed exact inversion methodology driven for the interval type-2 fuzzy logic subsystem is generalized to the overall interval type-2 fuzzy logic system via the decomposition property. In order to demonstrate the feasibility of the proposed methodology, a simulation study is given where the beneficial sides of the proposed exact inversion methodology are shown clearly.  相似文献   

9.
A kind of real-time stable self-learning fuzzy neural network (FNN) control system is proposed in this paper. The control system is composed of two parts: (1) A FNN controller which use genetic algorithm (GA) to search optimal fuzzy rules and membership functions for the unknown controlled plant; (2) A supervisor which can guarantee the stability of the control system during the real-time learning stage, since the GA has some random property which may cause control system unstable. The approach proposed in this paper combine a priori knowledge of designer and the learning ability of FNN to achieve optimal fuzzy control for an unknown plant in real-time. The efficiency of the approach is verified by computer simulation.  相似文献   

10.
用较少的模糊规则控制车流高峰期的交通信号,建立仿真系统模拟单交叉口二相位交通流,利用遗传算法对模糊规则进行优化并找出绿灯时间模糊集隶属函数的最优边界.实验结果表明,优化后的模糊规则对高峰期的车流变化具有更强的适应性.  相似文献   

11.
Fuzzy control algorithms are developed based on fuzzy models of systems. The control issues are posed as multiobjective optimization problems involving goals and constraints imposed on system's variables. Two basic design modes embrace on- and off-line modes of control development. The first type of design deals with the time and state-dependent objectives and pertains to control determination based upon the current state of the fuzzy model. The second design mode gives rise to an explicit form of a fuzzy controller that is learned based on a given list of state-control associations. Both the fuzzy models as well as fuzzy controllers are realized as logic processors.  相似文献   

12.
A visual programming system is described that allows the modeler full flexibility in defining the behavior of a manufacturing system simulation model. Decision-making behavior of objects in the simulation can be viewed by watching an animation of the system layout, viewing function block diagrams of rules that govern behavior, or noting the progress of an object in carrying out sequences of activities that are pictured as operation networks. Rules, elemental operations and operation networks are structured and associated with particular objects, groups of objects, and locations on the manufacturing system layout. The objective of this system is to reduce the time and expense required to construct and modify models, given that manufacturing system data have been collected.  相似文献   

13.
This paper investigates the system stability of a sampled-data fuzzy-model-based control system, formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampled-data fuzzy controller has an advantage that it can be implemented using a microcontroller or a digital computer to lower the implementation cost and time. However, discontinuity introduced by the sampling activity complicates the system dynamics and makes the stability analysis difficult compared with the pure continuous-time fuzzy control systems. Moreover, the favourable property of the continuous-time fuzzy control systems which is able to relax the stability analysis result vanishes in the sampled-data fuzzy control systems. A Lyapunov-based approach is employed to derive the LMI-based stability conditions to guarantee the system stability. To facilitate the stability analysis, a switching fuzzy model consisting of some local fuzzy models is employed to represent the nonlinear plant to be controlled. The comparatively less strong nonlinearity of each local fuzzy model eases the satisfaction of the stability conditions. Furthermore, membership functions of both fuzzy model and sampled-data fuzzy controller are considered to alleviate the conservativeness of the stability analysis result. A simulation example is given to illustrate the merits of the proposed approach.  相似文献   

14.
Vehicle suspension along with tires and steering linkages is designed for safe vehicle control and to be free of irritating vibrations. Therefore the suspension system designs are a compromise between ride softness and handing ability. However, this work is concerned with a theoretical investigation into the ride behavior of actively suspended vehicles. It is based on using fuzzy logic control (FLC) to implement a new sort of active suspension system. Comparisons between the behavior of active suspension system with FLC with those obtained from active systems with linear-quadratic regulator (LQR), ideal skyhook system and the conventional passive suspension systems. Results are introduced in such a way to predict the benefits that could be achieved from a fuzzy logic system over other competing systems. Furthermore, a controller is designed and made by using results of FLC system, theoretical inputs are used to examine the validity of this controller. Moreover, comparison between actual outputs from this controller with those obtained theoretically is made to judge the validity of the controller. The results indicate that the controller has a good capability in simulation of the theoretical model.  相似文献   

15.
This paper puts forward an integrated fuzzy simulation-fuzzy data envelopment analysis (FSFDEA) algorithm to cope with a special case of single-row facility layout problem (SRFLP). Discrete-event-simulation, a powerful tool for analyzing complex and stochastic systems, is employed for modeling different layout formations. Afterwards, a range-adjusted measure (RAM) is used as a data envelopment analysis (DEA) model for ranking the simulation results and finding the optimal layout design. Due to ambiguousness associated with the processing times, fuzzy sets theory is incorporated into the simulation model. Since the results of simulation are in the form of possibility distributions, the DEA model is treated on a fuzzy basis; therefore, a recent possibilistic programming approach is used to convert the fuzzy DEA model to an equivalent crisp one. The proposed FSFDEA algorithm is capable of modeling and optimizing small-sized SRFLP’s in stochastic, uncertain, and non-linear environments. The solution quality is inspected through a real case study in a refrigerator manufacturing company.  相似文献   

16.
This paper explores, from a surface-fitting viewpoint, two algorithmswhich are often applied in the field intelligent control: fuzzyself-organizing controllers and neural networks. Both methodologiesadapt internal model parameters in response to the plant's input-outputmapping. However, while the convergence of single-layer neuralnetworks has been studied in great detail, very few theoremshave been proved about self-organizing fuzzy logic controllers.In this paper, it is shown that B-splines can provide a frameworkfor choosing the shape of the fuzzy sets. Then the operatorschosen to implement the underlying fuzzy logic are examined,showing how they can produce ‘smooth’ control surfaces.It is now possible to make a direct comparison between fuzzylogic controllers and feedforward neural networks, demonstratingthat, in a forward-chaining mode, storing the plant's behaviourin terms of weights or rule confidences is equivalent. Finally,three training rules for the self-organizing fuzzy controllerare derived.  相似文献   

17.
A neural fuzzy control system with structure and parameter learning   总被引:8,自引:0,他引:8  
A general connectionist model, called neural fuzzy control network (NFCN), is proposed for the realization of a fuzzy logic control system. The proposed NFCN is a feedforward multilayered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. The NFCN can be constructed from supervised training examples by machine learning techniques, and the connectionist structure can be trained to develop fuzzy logic rules and find membership functions. Associated with the NFCN is a two-phase hybrid learning algorithm which utilizes unsupervised learning schemes for structure learning and the backpropagation learning scheme for parameter learning. By combining both unsupervised and supervised learning schemes, the learning speed converges much faster than the original backpropagation algorithm. The two-phase hybrid learning algorithm requires exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to obtain. To solve this problem, a reinforcement neural fuzzy control network (RNFCN) is further proposed. The RNFCN is constructed by integrating two NFCNs, one functioning as a fuzzy predictor and the other as a fuzzy controller. By combining a proposed on-line supervised structure-parameter learning technique, the temporal difference prediction method, and the stochastic exploratory algorithm, a reinforcement learning algorithm is proposed, which can construct a RNFCN automatically and dynamically through a reward-penalty signal (i.e., “good” or “bad” signal). Two examples are presented to illustrate the performance and applicability of the proposed models and learning algorithms.  相似文献   

18.
ABSTRACT

A prognostic approach based on a MISO (multiple inputs and single output) fuzzy logic model was introduced to estimate the pressure difference across a gas turbine (GT) filter house in a heavy-duty power generation system. For modelling and simulation of clogging of the GT filter house, nine real-time process variables (ambient temperature, humidity, ambient pressure, GT produced load, inlet guide vane position, airflow rate, wind speed, wind direction and PM10 dust concentration) were fuzzified using a graphical user interface within the framework of an artificial intelligence-based methodology. The results revealed that the proposed fuzzy logic model produced very small deviations and showed a superior predictive performance than the conventional multiple regression methodology, with a very high determination coefficient of 0.974. A complicated dynamic process, such as clogging phenomenonin heavy-duty GT system, was successfully modelled due to high capability of the fuzzy logic-based prognostic approach in capturing the nonlinear interactions.  相似文献   

19.
Power system transient stability is one of the most challenging technical areas in electric power industry. Thyristor-controlled series compensation (TCSC) is expected to improve transient stability and damp power oscillations. TCSC control in power system transients is a nonlinear control problem. This paper presents a T–S-model-based fuzzy control scheme and a systematic design method for the TCSC fuzzy controller. The nonlinear power system containing TCSC is modelled as a fuzzy “blending” of a set of locally linearized models. A linear optimal control is designed for each local linear model. Different control requirements at different stages during power system transients can be considered in deriving the linear control rules. The resulting fuzzy controller is then a fuzzy “blending” of these linear controllers. Quadratic stability of the overall nonlinear controlled system can be checked and ensured using H control theory. Digital simulation with NETOMAC software has verified that the fuzzy control scheme can improve power system transient stability and damp power swings very quickly.  相似文献   

20.
A fuzzy logic based delay estimation system is proposed and modelled. Conventional method of delay study involves solving static engineering equations in which only technical factors (traffic demand, roadway geometry, and signal control, etc.) are considered and the affect of nontechnical factors (such as weather or visibility) cannot be analyzed since they do not follow a predefined process. The fuzzy logic based delay estimation combines the complex technical and nontechnical factors and is adaptive to the changing driving environment. The rule base of the delay estimation system is constructed either following a mathematical model or from real-time traffic operational data. Simulation and field test of the fuzzy system have shown that fuzzy logic based modelling is a promising approach to improving intersection delay estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号