首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
抗冲共聚聚丙烯的结晶与相形态   总被引:2,自引:0,他引:2  
用POM、DSC、WAXD、DMA、AFM对两种乙烯含量、相对分子量及其分布、橡胶相含量几乎完全相同的、韧性差异很大的抗冲共聚聚丙烯(IPC)的结晶、相形态进行了研究.实验结果表明,两者的结晶形态、结晶行为相似.相比IPC-B,IPC-A中分散相和基体的相容性较好.IPC基体、分散相的组成分析发现,分散相的外层为软的乙丙无规共聚物(EPR),内部为硬的聚乙烯(PE)晶区,构成一种复杂的包藏结构.IPC的增韧效果主要来自于相形态和分散状况的贡献.提出了IPC的相结构模型,以描述IPC多相体系的相结构及两种IPC中E-b-P的作用与差异.  相似文献   

2.
Impact polypropylene copolymer (IPC), named polypropylene catalloy, not only possesses excellent impact property, but also presents good rigidity. Its superior performances result from the complicated composition and microstructure. In the present article, recent progress in the studies on microstructure, morphology, crystallization and rheological behavior of IPC is summarized, and findings of the authors and their collaborators are reported. In general, IPC is divided into three components, i.e., ethylene-propylene random copolymer (EPR), a series of different segment lengths ethylene-propylene copolymer (EbP) and propylene homopolymer. The reasonable macromolecular structures of EbP and a multilayered core-shell model of dispersed phase structure in IPC were proposed, in which the dispersed phase consists of an outer EbP shell, an inner EPR layer and an EbP core. It is found that the annealing at melt-state may lead to an abnormal phase inversion, and the phase inversion disappears when temperature cools down to room temperature. The cause of phase inversion is ascribed to the existence of EbP component, which results in the stronger activity of the dispersed phase. The crystalline structure and morphologic results confirm the formation of β-iPP in IPC. Furthermore, it is found that the ethylene content in IPC and cooling rate of the samples have an important influence on the formation of β-iPP. Based on the crystallization kinetics analyzed by Lauritzen-Hoffman theory, crystallization behavior of different IPC samples is discussed and it is proposed that the dilution effect of ethylene propylene copolymer has a more remarkable influence on surface nucleation than on crystal growth. In addition, annealing at high temperature can result in the changes of chain structure for IPC, and this instability is ascribed to the oxidative degradation and crosslink reaction mainly in iPP component.  相似文献   

3.
提出一种使高抗冲聚丙烯树脂的韧性和刚性同时得到提高的新方法.以亲油性纳米SiO_2改性高抗冲聚丙烯树脂,发现少量纳米SiO_2可显著降低高抗冲聚丙烯树脂中乙丙橡胶相的粒径和聚丙烯相的球晶尺寸,进而使高抗冲聚丙烯的常温韧性、低温韧性、刚性和耐热性同时得到提高.研究还发现,结晶成核剂和纳米SiO_2有协同效应,可使高抗冲聚丙烯的综合性能进一步得到提高.  相似文献   

4.
界面作用对HDPE/POEg/CaCO_3三元复合材料韧性的影响   总被引:3,自引:0,他引:3  
通过界面改性,制备了以CaCO3为核,马来酸酐接枝乙烯-辛烯共聚物弹性体(POEg)为壳的高密度聚乙烯(HDPEg)/弹性体(POE)/CaCO3的三元复合材料.由于“核-壳”结构的形成,弹性体和CaCO3表现出协同的增韧作用.同未经表面处理的CaCO3复合材料相比,在相同的CaCO3含量的情况下,表面处理的CaCO3由于与弹性体形成更强的界面粘结,使得三元复合材料的“脆-韧”转变发生在较低的弹性体含量.  相似文献   

5.
The impact propylene copolymer(IPC)and isotactic polypropylene(iPP)were separately selected to prepare laminates with high density polyethylene(HDPE)by hot press.The peel forces of IPC/HDPE and i’PP/HDPE laminates were examined,and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate.According to the special microstructure of IPC,the co-crystallization of the ethylene segments in ethylene-propylene block copolymer(EbP)component of IPC and the PE chain in HDPE was proposed to explain the high-strength welding.The DSC results indicated that there indeed existed some interaction between IPC and HDPE,and the crystallizable PE component in IPC could affect the crystallization of HDPE.The scanning electron microscope(SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase,indicating the good miscibility between HDPE and EbP components of IPC.According to the above results,the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.  相似文献   

6.
The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.  相似文献   

7.
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content(about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of Eb P, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.  相似文献   

8.
Introduction   As a structure material,a polymer has two important mechanical properties,i.e.,strength and toughing.Therefore,plastic toughening isalwaysa fundamental study on poly-mer materials.Traditionally,toughnessmodification isto make rubberasan elastomerimpactmodifier dispersed to plastic matrix which is hence toughened[1 ,2 ] .But as the toughness ofplastic is improved,the elastomerimpactmodifieralso reducesthe othermechanical propertiesof the material.Consequently,whether rigid par…  相似文献   

9.
刚性聚合物微球透明增韧聚苯乙烯   总被引:4,自引:0,他引:4  
通过多步复合乳液聚合方法合成了一种具有核壳结构的刚性聚合物微球.不同粒径、用量及核层交联密度的核壳微粒(C-S)与聚苯乙烯(PS)共混得到PS/C-S复合材料.通过对其冲击强度及透明性的研究表明增韧PS的最佳条件是核壳微粒的粒径大于100nm,复合材料中的微粒含量在2%~5%,核层具有适当的交联度.在未影响材料透明性的前提下,材料的韧性比纯PS提高2倍  相似文献   

10.
半导体Si上电沉积Cu-Co颗粒膜及其巨磁电阻效应   总被引:3,自引:0,他引:3  
采用电化学沉积方法在半导体Si上制备Cu-Co金属颗粒膜. XRD测试结果表明制备态的薄膜形成了单相亚稳态面心合金结构, 薄膜经退火后, XRD谱图中出现了析出的纯金属Co的衍射峰, 这表明薄膜在退火过程中发生了相分离. TEM测试结果也进一步证实了磁性的Co颗粒从非磁性的铜基体中析出. 随着退火温度的增加, 颗粒膜巨磁电阻(GMR)效应不断增大, 当退火温度为450 ℃时, Co0.20Cu0.80薄膜的巨磁电阻效应达到最大, 磁阻率为8.21%. 之后, 磁阻率又随退火温度的升高而降低. 退火前后样品磁滞回线的变化表明薄膜中发生了从超顺磁性到铁磁性的转变, 矫顽力、剩余磁化强度和饱和磁化强度均随退火温度的增高而逐渐增大. 超顺磁性颗粒的作用导致了GMR-H与M-H曲线的不同.  相似文献   

11.
采用预乳化多步种子乳液聚合法合成聚丙烯酸酯类聚合物(ACR)胶乳,实验得出种子乳液用量与聚丙烯酸丁酯粒径之间的关系,实现对胶乳粒子粒径的控制;对反应中影响粒子粒径的因素做了分析,以此确定最佳反应条件为:温度为65℃;乳化剂:十二烷基硫酸钠和聚氧乙烯基醚硫酸钠摩尔比为4/3,乳化剂用量为0.9%,单体固含量30%~37%...  相似文献   

12.
王勇 《高分子科学》2013,31(2):232-241
As a part of a serial work about the annealing inducing improvement of fracture toughness of polypropylene (PP) articles, in this work, a highly efficient mobilizer was introduced into PP and the injection-molded samples were annealed at different temperatures. The mobility of chain segments of PP was investigated by measuring the glass transition temperature. Differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) were used to characterize the variation of crystalline structure of PP during the annealing process. The fracture behaviors including notched Izod impact fracture and universal tensile fracture were investigated to detect the mechanical properties in response to the variations of both chain segments mobility and crystalline structures. It was found that the mobilizer greatly improved the chain segments mobility. Further results showed that the mobilizer also induced apparent changes of the glass transition temperature and the degree of crystallinity of PP during the annealing process. Consequently, the annealed PP samples containing a few amount of mobilizer exhibited largely increased fracture toughness.  相似文献   

13.
A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA)) were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(T_g)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/...  相似文献   

14.
研究了三种混合方式对于Nylon 6 PPO TPEg共混体系的影响 .混合是在双螺杆挤出机上进行的 .即(A)尼龙 6、聚苯醚和TPEg的混合物直接进行熔融挤出 ;(B)尼龙 6与TPEg的混合物预挤出 ,然后与聚苯醚熔融挤出 ;(C)聚苯醚和TPEg的混合物预挤出 ,然后与尼龙 6熔融挤出 .实验结果表明 ,混合方式不仅会影响共混物的形貌结构 ,而且会影响复合材料的最终性能 ,如力学性能、热性能和尺寸稳定性 .采用混合方式C所得的尼龙 6 聚苯醚复合材料的抗冲击强度高于用混合方式A和B所制备的复合材料 .这是因为聚苯醚和TPEg预共混时 ,聚苯醚上的OH基团和TPEg上的一部分马来酸酐发生化学反应 .然后预混物和尼龙 6熔融挤出时 ,剩下的马来酸酐再与尼龙分子上的NH2 基团反应 .这样就会形成一个好的界面层 ,它使复合材料的抗冲击强度大幅度提高 ,材料达到了超高韧性  相似文献   

15.
Polyamide nanocomposites with fair balance of mechanical properties were recently obtained by addition of finely dispersed clay-compatibilized rubber or rigid PS phase. This work deals with combination of both components, which recently led also to enhanced mechanical behaviour in an analogous reactively compatibilized ternary system.Application of clay to PA6/PS/EPR matrix leads to a decrease in particle size analogously to corresponding binary blends, but the effect of clay on toughness is predominantly contradictory, i.e., a decrease with increasing clay content was found. Also the toughening effect of formed core-shell (elastomer/clay) particles is lower in comparison with binary PA6/EPR. At the same time, in contrast to the PA/PS system, the presence of core-shell particles formed by PS/C15 preblending leads to fair mechanical behaviour including enhanced toughness. This documents a complex affecting of the system behaviour by clay and the expected synergistic cooperation of numerous clay-induced changes in both component parameters and structure. The obtained results indicate that a proper combination of rigid and elastomeric inclusions can lead to nanocomposites with balanced and enhanced mechanical behaviour.  相似文献   

16.
ACR-g-PVC复合粒子结构与对PVC的增韧效率   总被引:8,自引:0,他引:8  
采用丙烯酸丁酯 (BA)和丙烯酸 2 乙基己酯 (EHA)交联共聚物为核 ,BA与EHA或甲基丙烯酸甲酯(MMA)与苯乙烯 (St)或MMA与丙烯酸乙酯 (EA)交联共聚物为壳 ,合成了 3种聚丙烯酸酯 (ACR) [P(BA EHA)、ACRⅠ、ACRⅡ ]胶乳 .以 3种ACR胶乳为种子 ,分别与氯乙烯 (VC)进行乳液接枝共聚 ,制备了相应 3种复合粒子 (ACR g PVC) .借助动态光散射法和透射电镜考察了ACR与复合乳胶粒的粒径与结构 ,表征了所研制材料的形态和冲击韧性 .研究结果表明 ,3种ACR g PVC材料的常温缺口冲击强度随ACR含量增加而显著提高 ,其突跃点的发生具有等橡胶量效应 ,其临界橡胶含量约为 4 % ,并采用脆 韧转变的临界粒子间距模型对其进行了解释 ;P(BA EHA)比核 壳ACRⅠ或ACRⅡ具有更高的增韧效率 ,依据复合粒子的两种理想结构模型对其增韧效率进行了分析 .  相似文献   

17.
Poly(trimethylene terephthalate) (PTT) based blends toughened with up to 30 wt.% of a partially maleinized poly(ethylene-octene) copolymer (mPEO) were obtained by melt mixing. The blends were composed of two pure amorphous phases and a partially crystalline PEO phase. The rubber modification clearly compatibilized the blends leading to a decrease in the dispersed phase size. The decrease was not enough to attain the brittle-tough transition, but an increase in the shear rate gave rise to an additional decrease in the dispersed phase size and in the interparticle distance (IDc) that led to very high toughness values (15-fold the notched impact strength of the matrix) at rubber contents above 25 wt.%. The critical interparticle distance of the blends was 0.17 μm. A comparison between this IDc and those of PBT/mPEO and PET/mPEO blends was explained in terms of their interfacial tensions.  相似文献   

18.
纳米级CaCO_3粒子与弹性体CPE微粒同时增韧PVC的研究   总被引:12,自引:0,他引:12  
研究了平均粒径为 30nm的超细级纳米CaCO3 与氯化聚乙烯 (CPE)对聚氯乙烯 (PVC)共混体系二元协同增韧效应及机制 .结果表明 ,当共混体系中有一定量的CPE时 ,纳米CaCO3 的加入可以明显地提高共混物的韧性 ,而不降低共混物的强度和刚性 .纳米CaCO3 在PVC基体中达到了纳米级的分散 .当纳米CaCO3 的用量为 8份 (质量 )时 ,PVC CPE 纳米CaCO3 共混物的冲击断面产生了大量的有规则的网丝状结构 ,共混物的缺口冲击强度达到 81 1kJ m2 ,比不加纳米CaCO3 的共混体系高 7 3倍 .CPE的加入对共混体系的加工流动性能无影响 ,纳米CaCO3 的加入使共混体系的加工流动性能变差  相似文献   

19.
TOUGHENING OF POLYCARBONATE WITH PBA-PMMA CORE-SHELL PARTICLES   总被引:1,自引:0,他引:1  
The miscibility, mechanical properties, morphology and toughening mechanism of PC/PBA-PMMA blends were investigated. The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacial adhesion. The Izod impact strength of blend PC/PBA-PMMA with 4% (volume fraction) PBA-PMMA core-shell modifier is 16 times higher than that of pure PC. The core-shell volume fraction and thickness of the PMMA shell have effect on the toughness of PC/PBA-PMMA blends. As PMMA volume fraction increases, the toughness of PC/PBA-PMMA blend increases, and reaches a maximum value at 30% volume fraction of PMMA or so. The tensile properties of PC/PBA-PMMA blend with a minimum amount of PBA-PMMA modifier show that brittle-tough transition has no significant variance in comparison with that of pure PC. The scanning electron microscopic (SEM) observation indicates that the toughening mechanism of the blend with the pseudo-ductile matrix modified by small core-shell latex polymer particles is the synergetic effect of cavitation and shear yielding of the matrix.  相似文献   

20.
非离子型活性乳化剂及其水性环氧树脂的制备和性能   总被引:2,自引:0,他引:2  
以α-甲氧基-ω-N-异丙醇基-对苯甲胺基聚乙二醇和酚醛环氧树脂F51为原料合成了非离子型活性乳化剂(PEGF51),并与F51混合,通过相反转法制备了分散相粒径为纳米级的PEGF51/F51水乳液.通过红外光谱和凝胶渗透色谱(GPC)分析了PEGF51的结构,研究了PEGF51浓度对PEGF51/F51水乳液分散相粒子粒径和D230-PEGF51/F51固化产物的力学性能、断面形貌和耐水性能的影响规律.结果表明:在环氧树脂分子结构中引入化学连接的PEG链段有利于提高环氧树脂链段的亲水性和应变松弛速率.增加PEGF51浓度,制备的PEGF51/F51水乳液分散相粒子粒径减小,粒度分布变窄;D230-PEGF51/F51固化产物的玻璃化转变温度和室温下的刚度和拉伸强度降低,冲击强度、断裂应变和吸水率增加.PEGF51与F51物质的量的比为1∶3时可制备出同时具有优异的拉伸强度、模量、断裂应变、冲击性能和低吸水率的D230-PEGF51/F51环氧树脂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号