首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frequencies of free vibration of rectangular plates of arbitrary thickness, with different support conditions, are calculated by using the Method of Initial Functions (MIF), proposed by Vlasov. Sixth and fourth order MIF theories are used for the solution. Numerical results are presented for three square plates for three thickness ratios. The support conditions considered are (i) three sides simply supported and one side clamped, (ii) two opposite sides simply supported and the other two sides clamped and (iii) all sides clamped. It is found that the results produced by the MIF method are in fair agreement with those obtained by using other methods. The classical theory gives overestimates of the frequencies and the departures from the MIF results increase for higher modes and larger thickness ratios.  相似文献   

2.
In this paper, in order to be self-contained, a brief account of the construction technique of the method of initial functions which has been developed for circular plates by the author is given. Then the new method is applied to investigate the free vibration of two circular plates: i.e., simply supported and completely free plates. Numerical results are obtained and compared with those of the classical, Reissner and Mindlin theories.  相似文献   

3.
4.
Vibration characteristics of rectangular plates continuous over full range line supports or partial line supports have been studied by using a discrete method. Concentrated loads with Heaviside unit functions and Dirac delta functions are used to simulate the line supports. The fundamental differential equations are established for the bending problem of the continuous plate. By transforming these differential equations into integral equations and using the trapezoidal rule of the approximate numerical integration, the solution of these equations is obtained. Green function which is the solution of deflection of the bending problem of plate is used to obtain the characteristic equation of the free vibration. The effects of the line support, the variable thickness and aspect ratio on the frequencies and mode shapes are considered. By comparing the numerical results obtained by the present method with those previously published, the efficiency and accuracy of the present method are investigated.  相似文献   

5.
6.
A method based on the variational principles in conjunction with the finite difference technique is applied to examine the free vibration characteristics of isotropic rectangular plates of linearly varying thickness by including the effects of transverse shear deformation and rotary inertia. The validity of the present approach is demonstrated by comparing the results with other solutions proposed for plates with uniform and linearly varying thickness. Natural frequencies and mode shapes of Mindlin plates with simply supported and clamped edges are determined for various values of relative thickness ratio and the taper thickness constant.  相似文献   

7.
8.
Analytical type solutions are obtained for the free vibration frequencies and mode shapes of thin corner-supported rectangular plates with symmetrically distributed reinforcing beams, or strips, attached to the plate edges. The method of superposition is employed. Equations governing reactions at plate-beam interfaces are developed in dimensionless form. The approach is comprehensive in that both lateral and rotational stiffness, and inertia, of the beam are incorporated into the analysis. For illustrative purposes computed eigenvalues and mode shapes are presented for two plate-beam systems of realistic geometries. It is shown that the method is easily extended to cover the case where the edge beams do not have a symmetrical distribution. This appears to be the first comprehensive analytical study of this problem of industrial interest.  相似文献   

9.
The title problem is solved assuming that the thickness varies symmetrically with respect to the x-axis. The edges defined by x = ± a/2 are elastically restrained against rotation while the remaining edges are clamped or simply supported.Approximate expressions for four of the lower natural frequencies of vibration (including the fundamental) are given.A forced vibrations situation is also dealt with.  相似文献   

10.
A numerical method developed by the author has been used as a basis for determining natural frequencies of rectangular plates possessing different degrees of elastic restraints along the edges. The basic functions satisfying the boundary conditions along two opposite edges for such cases have been derived. Comparison of results with others that are available indicates excellent accuracy. Many new results have been presented.  相似文献   

11.
12.
An analytical method is derived for determining the vibrations of two plates which are generally supported along the boundary edges, and elastically coupled together at an arbitrary angle. The interactions of all four wave groups (bending waves, out-of-plane shearing waves, in-plane longitudinal waves, and in-plane shearing waves) have been taken into account at the junction via four types of coupling springs of arbitrary stiffnesses. Each of the transverse and in-plane displacement functions is expressed as the superposition of a two-dimensional (2-D) Fourier cosine series and several supplementary functions which are introduced to ensure and improve the convergence of the series representation by removing the discontinuities that the original displacement and its derivatives will potentially exhibit at the edges when they are periodically expanded onto the entire x-y plane as mathematically implied by a 2-D Fourier series. The unknown expansions coefficients are calculated using the Rayleigh-Ritz procedure which is actually equivalent to solving the governing equation and the boundary and coupling conditions directly when the assumed solutions are sufficiently smooth over the solution domains. Numerical examples are presented for several different coupling configurations. A good comparison is observed between the current results and the FEA models. Although this study is specifically focused on the coupling of two plates, the proposed method can be directly extended to structures consisting of any number of plates.  相似文献   

13.
A new variable kinematic Ritz method applied to free vibration analysis of arbitrary quadrilateral thin and thick isotropic plates is presented. Carrera's unified formulation and the versatile pb-2 Ritz method are properly combined to build a powerful yet simple modeling and solution framework. The proposed technique allows to generate arbitrarily accurate Ritz solutions from a large variety of refined two-dimensional plate theories by expanding so-called Ritz fundamental nuclei of the plate mass and stiffness matrices. Theoretical development of the present methodology is described in detail. Convergence and accuracy of the method are examined through several examples on thin, moderately thick, and very thick plates of rectangular, skew, trapezoidal and general quadrilateral shapes, with an arbitrary combination of clamped, free and simply supported edges. Present results are compared with existing three-dimensional solutions from open literature. Maximum and average differences of various higher-order plate theories and three-dimensional results are also presented with the aim of providing useful guidelines on the choice of appropriate plate theory to get a desired accuracy on frequency parameters.  相似文献   

14.
In this paper a highly accurate mathematical technique for establishing the free vibration eigenvalues and mode shapes of rectangular plates with symmetrically distributed point supports is introduced. The method is based on the principle of superposition and it constitutes, in essence, an extension of a technique described earlier for the analysis of completely free plates. Eigenvalues, covering numerous modes and aspect ratios, are tabulated for corner supported rectangular plates. It is seen that with some modifications the method is equally applicable to problems where the point supports are not symmetrically distributed.  相似文献   

15.
A theoretical and experimental study of the effect of weld runs on the flexural vibrational characteristics of the common structural element, the rectangular plate, is described. A finite difference technique is utilized for the determination of the in-plane residual stress pattern due to the weld(s) and the Rayleigh-Ritz method, with beam characteristic functions, is used for the out-of-plane vibration analysis. The theoretical approach presented is applicable to rectangular plates of any practical aspect ratio, having any combination of out-of-plane boundary conditions for which beam functions may reasonably be used and subject to one or more weld runs parallel to any edge. Theoretical and experimental results for a number of specific plates are presented, demonstrating the effects of welding on the plate vibration and the capability and accuracy of the analytical approach in predicting these effects. Included is a study of the effect of using the full residual stress pattern as derived from the finite difference analysis, the effect of neglecting certain stress components and the effect of using simplified stress patterns developed primarily for the stress and buckling analysis of long plates.  相似文献   

16.
The free vibration of ring-shaped polar-orthotropic sector plates is analyzed by the Ritz method using a spline function as an admissible function for the deflection of the plates. For this purpose, the transverse deflection of a sector plate is written in a series of the products of the deflection function of a sectorial beam and that of a circular beam satisfying the boundary conditions. The deflection function of the sectorial beam is approximately expressed by a quintic spline function, which satisfies the equation of flexural vibration of the beam at each point dividing the beam into small elements. The frequency equation of the plate is derived by the conditions for a stationary value of the Lagrangian. The present method is applied to ring-shaped polar-orthotropic sector plates with some combination of boundary conditions, and the natural frequencies and the mode shapes are calculated numerically up to higher modes. This method is very effective for the study of vibration problems of variously shaped anisotropic plates including these sector plates.  相似文献   

17.
18.
19.
In this study free vibration of simply supported and clamped super elliptical plates is investigated. This class of plates includes a wide range of external boundaries varying from an ellipse to a rectangle. Although studies on the upper and lower bounds of these plate geometries, namely circle and rectangle, are quite extensive, contributions on the mid-shapes, especially for simply supported boundary edges are very limited. The Kirchhoff plate model with isotropic and homogeneous material is studied. The super elliptical powers are chosen from 1 to 10. The Ritz method is employed for the solution of the energy equations of the plates. The effects of Poisson's ratio, which should not be neglected for simply supported plates with curved boundaries, and the aspect ratio of the plate are both examined in detail. The effect of thickness variation is also considered in this study. In order to avoid long computational run times, physically pertinent trial functions are utilized. The frequency parameters obtained are presented and compared with published results for plate shapes that match the current cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号