首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Undesired fragmentation of electrospray generated ions in an rf multipole traps can be problematic in many applications. Of special interest here is ion dissociation in a 2-D quadrupole ion trap external to a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) used in proteomic studies. In this work, we identified the experimental parameters that determine the efficiency of ion fragmentation. We have found that under the pressure conditions used in this study there is a specific combination of the radial and axial potential well depths that determines the fragmentation threshold. This combination of rf and dc fields appears to be universal for ions of different mass-to-charge ratios, molecular weights, and charge states. Such universality allows the fragmentation efficiency of the trapped ions in the course of capillary liquid chromatography (LC) separation studied to be controlled and can increase the useful duty cycle and dynamic range of a FTICR mass spectrometer equipped with an external rf only 2-D quadrupole ion trap.  相似文献   

2.
3.
We propose a novel ion cyclotron resonance ion trap capable of confining ions even at high pressure. The trap consists of three capacitively coupled axial sections, each composed of four circular cross-section rods parallel to the magnetic field axis. Ion confinement along the magnetic field direction is provided by applying the same static voltage to each set of “endcap” rods. As for a two-dimensional quadrupole mass filter, a sufficiently high rf frequency (several MHz) leads to an “effective” electrostatic “pseudopotential” well with a minimum on the trap central axis. Ions are confined radially by the combination of an applied axial static magnetic field and a radially inward-directed electric field resulting from differential rf voltages applied to each set of four rods. Ion confinement properties are revealed from a Paul traplike “stability diagram,” whereas ion trajectories are analyzed in terms of Penning-type ion cyclotron rotation, magnetron rotation, and axial oscillation motional modes. Ion cyclotron frequency increases with the strength of the rf trapping field. Ion magnetron motion becomes stable if the rf voltage is high enough. Therefore, ion trajectories can be stable even in the presence of ion-neutral collisions. Adding an ac potential to a Penning trap should dramatically increase the upper mass detection limit.  相似文献   

4.
A novel approach is proposed for extracting a maximum of information from secondary ions ejected when surfaces are bombarded with keV mono or polyatomic ions. It is known that the event-by-event bombardment-detection mode allows identification of spatiotemporal relationships among individual secondary ions which in turn reveal surface composition within nanometric dimensions. We have devised a procedure for identifying spatiotemporal relationships among individual secondary ions without the requirement of pulsed sample interrogation (one single projectile at a time). The consequence of "mass separated time-of-flight mass spectrometry" is a much improved measurement duty cycle.  相似文献   

5.
The application of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to the quantitative study of molecular recognition in the gas phase is reviewed. Because most quantitative measurements are dependent on accurate determination of the pressure of a neutral reagent, methods for accurate pressure measurement in FTICR, including gauge calibration using a reaction with known rate constants (the traditional method), exothermic proton transfer rate measurement (often the best method when accurate neutral pressures in the trapping cell are desired), and linewidth measurement (a little-used, but generally applicable method) are discussed. The use of rate constant measurements in molecular recognition is illustrated with examples employing natural abundance isotopic labeling to study self-exchange and 2 : 1 ligand:metal complex formation kinetics in crown ether-alkali cation systems. Self-exchange rates do not correlate with alkali cation/crown cavity size relationships, whereas 2 : 1 complex formation kinetics correlate strongly with size relationships. The use of exchange equilibrium constant measurements to characterize molecular recognition is illustrated by alkali cation exchanges between 18-crown-6 and the isomers of dicyclohexano-18-crown-6. These experiments show that the alkyl-substituted ligand binds alkali cations better than unsubstituted 18-crown-6 in the gas phase, in accordance with expectations based on the higher polarizability of the alkyl-substituted ligand. Further, the metal binding thermochemistry differs for the two dicyclohexano-18-crown-6 isomers, with the bowl-shaped cis-syn-cis isomer binding all the alkali cations more strongly than the cis-anti-cis isomer. The measurement of entropies and enthalpies associated with one of the most subtle forms of molecular recognition, enantiomeric discrimination, is illustrated by studies of the discrimination between enantiomers of chiral amines by dimethyldiketopyridino-18-crown-6. This chiral ligand binds chiral primary ammonium cations that have the opposite absolute configuration at their stereocenter more strongly than the enantiomer with the same absolute configuration. Gas-phase studies show that this enantiomeric discrimination is enthalpic in origin, likely related to more favorable pi-pi stacking for the preferred enantiomer. Entropy disfavors binding of the preferred enantiomer.  相似文献   

6.
The design and performance of a new time-of-flight mass spectrometer is reported. The instrument combines the advantages of a pulsed drawout TOF analyzer with a liquid secondary ion source. Differences from commercially available pulsed TOF analyzers (Wiley/McLaren type) are discussed with regard to operation with ion desorption from a liquid matrix.  相似文献   

7.
8.
9.
10.
The present range and power of Fourier transform ion cyclotron resonance mass spectrometry rest on a number of prior technique developments. In this article, selected developments in neutral/ion introduction, ionization methods, excitation/detection, ion trap configuration/operating modes, ion dissociation and MS/MS, ion cooling techniques, theory and data reduction are briefly explained and chronicled. Evidence for the value of these techniques is provided by a compilation of current world records for mass resolution, mass resolving power and mass accuracy. With these capabilities, it becomes possible to resolve and identify up to thousands of components of a complex mixture, often without prior wet chemical separation, thereby potentially changing the whole approach to dealing with chemical and biological complexity.  相似文献   

11.
The negative ion mass spectra of phosphonitrile chlorides (PNCl2)n (n≥3) are studied. Since this series of compounds give very intense negative [M]? and [M? Cl]? ions, they can be used as good reference standards for negative ion mass spectrometry.  相似文献   

12.
The use of electrospray ionisation Fourier-transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) for the analysis of dynamic combinatorial libraries (DCLs) of pseudo-peptide macrocyclic hydrazone oligomers is presented. The design of library building blocks results in mixtures of compounds with greater diversity than libraries generated by conventional combinatorial chemistry and so presents increased demands for analysis. The extended capabilities of the FTICR technique, specifically selective ion trapping, sensitivity, high resolution and mass accuracy over a broad mass range, are compatible with these increased demands and, most importantly, without the need for chromatography. Preliminary studies on the sequencing of cyclic oligomers and confirmation of the presence of sequence isomers are presented. These studies highlight the potential of FTICR-MS as a superior technique for the analysis of combinatorially generated compounds.  相似文献   

13.
External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.  相似文献   

14.
The effects of buffer gas pressure on ion trap stability, mass resolution/calibration, and choice of mass scanning are described. Pressure effects were treated phenomenologically by adding a drag term to the ion equations of motion. The resulting collisional damping enlarges the mass-dependent stability region but reduces the region in which mass-selective resonance ejection can be performed. The pressure effects can be reduced by increasing the frequency of the alternating quadrupole field.  相似文献   

15.
The three-dimensional atom probe (3 D-AP) is a new variant of the field ion microscope (FIM) combined with a time of flight mass spectrometer and single ion detection sensitivity (imaging atom probe). With the field ion microscope the topology of a surface, surface reactions and surface modifications can be studied in atomic detail. Using time of flight measurements, surface layers and interface layers can be chemically analyzed atom by atom and atomic layer by atomic layer. This three-dimensional atom probe permits the elemental reconstruction of a small volume of the specimen with near atomic resolution. This improvement is obtained by using the digitized video signal of the imaging atom probe detector and a separate time signal from the phosphor screen to achieve simultaneously the x and y position and the mass-to-charge ratio of individual ions striking the detector. Examples from a study on high speed steel are presented to demonstrate the usefulness of a recently built instrument.  相似文献   

16.
17.
Summary The direct coupling of a supercritical fluid chromatograph with a secondary ion mass spectrometer is described. SI spectra of some polyaromatic hydrocarbons and phthalate esters show the typical fragmentation pattern [as observed in SIMS] including cationization with silver.
SFC-Inlet-Source für die Sekundärionen-Massenspektrometrie
  相似文献   

18.
19.
A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He(+) ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An "explosive" model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.  相似文献   

20.
Negative ion mass spectrometry using a conventional mass spectrometer with a special ion source and a sample pressure of approximately 2 × 10?5 Torr is shown to be an excellent method for the qualitative analysis of lower mass alcohols, mercaptans, ketones, aldehydes, aliphatic carboxylic acids and esters, the spectra of which are characterized by intense [M – H] ? ions. The method may be termed a ‘selective’ low energy ionization technique, being suitable for the above organic compounds, but not for nitriles, nitro compounds, hydrocarbons, ethers, amines, amides, nitrogen heterocycles and chlorinated compounds. This method can be looked upon as a complementary method, to positive ion mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号