首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.  相似文献   

2.
The interactions of nitrogen oxides NO(x) (x = 1,2,3) and N(2)O(4) with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO(2) and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH???O (N) between -OH and nitrogen oxides and new weak covalent bonds C???N and C???O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO(2) and NO(3) with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N(2)O(4) adsorptions on GO. The calculated results show good agreement with experimental observations.  相似文献   

3.
A method is presented to allow the calculation of the dipole polarizabilities of ions and molecules in a condensed-phase coordination environment. These values will be useful for understanding the optical properties of materials and for developing simulation potentials which incorporate polarization effects. The reported values are derived from plane wave density functional theory calculations, though the method itself will apply to first-principles calculations on periodic systems more generally. After reporting results of test calculations on atoms to validate the procedure, values for the polarizabilities of the oxide ion and various cations in a range of materials are reported and compared with experimental information as well as previous theoretical results.  相似文献   

4.
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k|| points in the surface plane. For all systems we find that the SIESTA transmission functions converge toward the plane-wave result as the SIESTA basis is enlarged. Overall, we find that an atomic basis with double zeta and polarization is sufficient (and in some cases, even necessary) to ensure quantitative agreement with the plane-wave calculation. We observe a systematic downshift of the SIESTA transmission functions relative to the plane-wave results. The effect diminishes as the atomic orbital basis is enlarged; however, the convergence can be rather slow.  相似文献   

5.
6.
The purpose of this overview is to highlight the broad scope and utility of current applications of density functional theory (DFT) methods for the study of the properties and reactions of biomolecules. This is illustrated using examples selected from research carried out within our research group and in collaboration with others. The examples include the hyperfine coupling constants of amino acid radicals, the use of an amino acid as a chiral catalyst for the formation of carbon–carbon bonds in the aldol reaction, hydrogen-bond mediated catalysis of an aminolysis reaction, radiation-induced protein–DNA cross-links, and the mechanism by which an antitumor drug cleaves DNA. We demonstrate that DFT-based methods can be applied successfully to a broad range of problems that remain beyond the scope of conventional electron-correlation methods. Furthermore, we show that contemporary computational quantum chemistry complements experiment in the study of biological systems. Received: 19 December 2001 / Accepted: 8 April 2002 / Published online: 4 July 2002  相似文献   

7.
The energetics and the electronic and magnetic properties of iridium nanoparticles in the range of 2-64 atoms were investigated using density functional theory calculations. A variety of different geometric configurations were studied, including planar, three-dimensional, nanowire, and single-walled nanotube. The binding energy per atom increases with size and dimensionality from 2.53 eV/atom for the iridium dimer to 6.09 eV/atom for the 64-atom cluster. The most stable geometry is planar until four atoms are reached and three-dimensional thereafter. The simple cubic structure is the most stable geometric building block until a strikingly large 48-atom cluster, when the most stable geometry transitions to face-centered cubic, as found in the bulk metal. The strong preference for cubic structure among small clusters demonstrates their rigidity. This result indicates that iridium nanoparticles intrinsically do not favor the coalescence process. Nanowires formed from linear atomic chains of up to 4-atom rings were studied, and the wires formed from 4-atom rings were extremely stable. Single-walled nanotubes were also studied. These nanotubes were formed by stacking 5- and 6-atom rings to form a tube. The ring stacking with each atom directly above the previous atom is more stable than if the alternate rings are rotated.  相似文献   

8.
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1‐(β‐D ‐ribofuranosyl)‐2‐pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1‐(β‐D ‐ribofuranosyl)‐5‐methyl‐2‐pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital‐based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

9.
Density functional theory calculations have been used to investigate the adsorption of epoxy and hydroxyl groups on zigzag graphene nanoribbons. Our calculations show that the adsorbed epoxy groups and both the epoxy and hydroxyl groups on a ribbon surface can be transformed to a carbonyl pair and a carbonyl-hydroxyl pair. The energy barriers of these processes are 1.13 and 0.37 eV, respectively. In contrast to the reduced GO sheets, the stabilities of the carbonyl-hydroxyl pair and the carbonyl pair, with respect to the corresponding initial configuration, strongly depend on the adsorbed sites of groups. The vacancy defect improves the adsorptions of oxygen-containing groups on the surface. Because of the adsorption of new hydroxyl groups, the O-H bond belonging to the carbonyl-hydroxyl pair was highly dissociative and led to the formation of a highly stable carbonyl group with the release of water. The magnetic and electronic properties of the zigzag graphene nanoribbons were well tuned by different oxidized groups.  相似文献   

10.
The addition of extravalence, polarization and diffuse functions, were studied in order to conclude how they affect the P? O stretching frequencies of several biological relevant phosphate molecules. The results show that the polarization and the diffuse functions have opposite effects on the frequencies: the polarization functions downshift while the diffuse functions upshift the frequencies. The effect of the valence functions was more difficult to interpret. The effect of the conductor‐like screening model (CPCM)‐continuum model was also studied. The results show that the CPCM‐continuum model has a substantial effect on the frequencies for these small molecules. The continuum model's efficiency is mainly due to its effect on the geometries and not on the frequencies. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
Laser-ablated Mo atoms react with H2 upon condensation in excess argon, neon, and hydrogen. The molybdenum hydrides MoH, MoH2, MoH4, and MoH6 are identified by isotopic substitution (H2, D2, HD, H2 + D2) and by comparison with vibrational frequencies calculated by density functional theory. The MoH2 molecule is bent, MoH4 is tetrahedral, and MoH6 appears to have the distorted trigonal prism structure.  相似文献   

12.
We present projected gradient algorithms designed for optimizing various functionals defined on the set of N-representable one-electron reduced density matrices. We show that projected gradient algorithms are efficient in minimizing the Hartree-Fock or the Muller-Buijse-Baerends functional. On the other hand, they converge very slowly when applied to the recently proposed BBk (k=1,2,3) functionals [O. Gritsenko et al., J. Chem. Phys. 122, 204102 (2005)]. This is due to the fact that the BBk functionals are not proper functionals of the density matrix.  相似文献   

13.
The optimized molecular structures, vibrational frequencies and 1H and 13C NMR chemical shifts of acetylcholine halides (F, Cl, and Br) have been investigated using density functional theory (B3LYP) method with 6-311G(d) basis set. The comparison of their experimental and calculated IR, R and NMR spectra of the compounds has indicated that the spectra of three optimized minimum energy conformers can simultaneously exist in one experimental spectrum. Thus, it was concluded that the compounds simultaneously exist in three conformations in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles), vibrational frequencies and NMR chemical shifts for the minimum energy conformers were seen to be in a good agreement with the corresponding experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program.  相似文献   

14.
We have performed periodic restricted Hartree-Fock/6-31G** and B3LYP6-31G** density functional theory calculations on Li-doped trans-polyacetylene at various dopant concentrations, using C(2m)H(2m)Li2 unit cells (m = 7-14). Except for maintaining P1 rod symmetry the geometry was completely optimized for both uniform and nonuniform doping structures. In addition to geometry we obtain atomic charges, along with soliton formation and dopant binding energies, as well as band structures and densities of states. A thorough analysis of the band structure and density of states, as a function of dopant concentration, is presented. We also characterize the complex nature of the binding interaction between Li and the polyacetylene chain.  相似文献   

15.
《Chemical physics letters》2001,331(1-2):147-154
Atomic multiplet term energies for dn configurations have been estimated within density functional theory (DFT) exploiting symmetry to the largest possible extent. The electrostatic two-electron integrals, as well as term energies, are expressed in function of only three non-redundant single determinants (NRSDs), each of them being obtained from density functional calculations. The influence of correlation effects described with a gradient-corrected functional (GGA) is examined and discussed. Comparison with experimental data shows the reliability of this symmetry-based density functional approach.  相似文献   

16.
We report the generation of a nano-scale tubular structure of cellulose molecules (CelNT), through density functional theory (DFT) calculations. When a cellulose IIII (1 0 0) chain sheet model is optimized by DFT calculations, the sheet models spontaneously roll into tubes. The oligomers arrange in a right-handed, four-fold helix with one-quarter chain staggering, oriented with parallel polarity similar to the original crystal structure. Based on a one-quarter chain staggering relationship, six large CelNT models, consisting of 16 cellulose chains with DP = 80, are constructed by combinations of two types of chain polarities and three types of symmetry operations to generate a circular arrangement of molecular chains. All six CelNT models are examined by molecular dynamics (MD) calculations in chloroform. While four CelNT models retain a tubular form throughout MD calculations, the remaining two deform. 3D-RISM theory model is used to estimate the solvation free energies of the four CelNT models. The results suggest that the CelNT model with a chain arrangement of parallel polarity and right-handed helical symmetry forms the most stable tube structure.  相似文献   

17.
We have investigated aqueous Al-dimer complexes using density functional theory methods (e.g. the B3LYP exchange-correlation functional and the 6-311++G(d,p) basis set). In these calculations interactions between the Al(3+) cations and the H(2)O or OH(-) coordinating ligands are considered explicitly while the second hydration shell and remaining solvent are treated as a continuum under the IEF-PCM formalism. The Al-dimer chemical reactivity is discussed by analysis of changes in geometry, electronic structure and Gibbs free energy of formation, relative to two independent Al(H(2)O) monomers, as a function of water and hydroxide coordination. Our results indicate that the mechanism of cooperativity, i.e. decreased Al-water bond stability with increasing OH(-) coordination and increased water ligand hydrolysis as complex CN decreases, is operating on the dimer species and that, therefore, a wide variety of dimer species are available. While the stability of these species is observed to be dependent on the number of water and hydroxide ligands, the hydroxide bridging structure (singly, doubly and triply bridged species are considered) does not appear to correlate with dimer stability. Interestingly, intra-molecular H-bonds (in the form of the well known H(3)O bridge as well as two bridging structures, H(4)O(2) and H(2)O, that have not, to our knowledge, been previously considered) are observed to influence dimer stability. The evaluation of the equilibrium mole fraction of the dimer species in equilibrium with the aqueous Al(3+) monomer species of our previous study displays the qualitatively correct trend of solution composition as pH increases, namely monomeric aqueous Al(3+) and Al(OH) complexes dominate at low and high pH, respectively, and all remaining monomer and dimer species exist at intermediate pH. Further refinement of our data set by eliminating dimer complexes with OH/Al ratios greater than 2.6 brings our predicted equilibrium mole fraction distributions into excellent agreement with experimental observations. The triply bridged dimer is observed in low amounts while the singly and doubly bridged dimers dominate our model system at pH = ~4-7.  相似文献   

18.
We have carried out computational density functional investigations of Co I Re J (J=0,1,2; I+J=14) metal atom clusters. Through thorough optimization of geometry, spin polarization, and electronic configuration, the most stable structures for each cluster have been identified. While the global minima are found to be well defined and energetically well separated from other local minima, the study reveals a plethora of different structures and symmetries only moderately higher in energy. A key point of interest is the effect of doping the cobalt clusters with rhenium. Aside from significant structural reorganizations, rhenium is found to stabilize the clusters and couple down the spin. Furthermore, the most stable clusters comprise highly coordinated rhenium and, in the case of Co 12 Re 2, Re-Re bonding. Our results are compared to earlier experimental and computational data.  相似文献   

19.
20.
Adsorption of CO(2) on the rutile(110) surface was investigated using dispersion-corrected density functional theory and scanning tunneling microscopy (STM). On the oxidized surface the CO(2) molecules are found to bind most strongly at the five-fold coordinated Ti sites adopting tilted or flat configurations. The presence of bridging oxygen defects introduces two new adsorption structures, the most stable of which involves CO(2) molecules bound in tilted configurations at the defect sites. Inclusion of dispersion corrections in the density functional theory calculations leads to large increases in the calculated adsorption energies bringing these quantities into good agreement with experimental data. The STM measurements confirm two of the calculated adsorption configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号