首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu Y  Li Y  Liu R  Tan W  Li G 《Talanta》2011,84(2):462-470
Novel magnetic molecularly imprinted polymer (MIP) beads using ractopamine as template for use in extraction was developed by microwave heating initiated suspension polymerization. Microwave heating, as an alternative heating source, significantly accelerate the polymerization process. By incorporating magnetic iron oxide, superparamagnetic composite MIP beads with average diameter of 80 μm were obtained. The imprinted beads were then characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and vibrating sample magnetometer. Highly cross-linked porous surface and good magnetic property were observed. The adsorption isotherm modeling was performed by fitting the data to Freundlich isotherm model. The binding sites measured were 3.24 μmol g−1 and 1.17 μmol g−1 for the magnetic MIP beads and the corresponding non-imprinted magnetic beads, respectively. Cross-selectivity experiments showed the recognition ability of the magnetic MIP beads to analytes is relative to degree of molecular analogy to the template. Finally, this magnetic MIP bead was successfully used for enrichment of ractopamine, isoxsuprine and fenoterol from ultrasonically extracted solution of pork and pig liver followed by high performance chromatography with fluorescence detection. The proposed method presented good linearity and the detection limits was 0.52-1.04 ng mL−1.The recoveries were from 82.0% to 90.0% and from 80.4% to 86.8% for the spiked pork and pig liver, respectively, with the RSDs of 5.8-10.0%. Combination of the specific adsorption property of the MIP material and the magnetic separation provided a powerful analytical tool of simplicity, flexibility, and selectivity.  相似文献   

2.
Palm oil mill effluent (POME) is one of the most significant pollutant in the form of wastewater. It could have negative effects on the environment include the emission of biogas and water pollution which comes from discharging the brownish tick POME to the water bodies if not properly managed. Discharge of dark brownish colored of POME directly into water bodies may affect the aquatic life as it will reduce sunlight penetration and suppress the photosynthetic activity. A molecularly imprinted polymer (MIP) for removal of β-carotene from POME has been aimed to develope in this study. The preparation of β-carotene imprinted and non-imprinted polymer (NIP) involves polymerization of β-carotene (or without it) with β-cyclodextrin (β-CD), 9-vinylcarbazole (9VC), tolylene diisocyanate (TDI) and N,N-dimethylformamide (DMF) as the monomer, co-monomer, cross-linker and solvent (porogen), respectively. Analysis from FTIR showed that MIP and NIP have similar characteristic peak with different peaks intensity, indicating the similarity in the backbone structure of polymerization. TGA result displayed high thermal stability with final decomposition at 320 °C for MIP-β-CD-9VC as compared to NIP-β-CD-9VC. The pH study shows that sorption of β-carotene increased with decreasing the pH of POME and the maximum sorption capacities achieved at pH 2 were 10 μg/g and 7 μg/g for MIP-β-CD-9VC and NIP-β-CD-9VC, respectively. The maximum sorption achieved by using 500 mg of MIP as the sorption of β-carotene increased with increasing the dosage of MIP. Kinetic model evaluation has been applied on this prepared materials. The sorption equilibrium data was well described by Freundlich model. The results indicated that the sorption of β-carotene on MIP follows a pseudo–second–order kinetic.  相似文献   

3.
A molecularly imprinted polymer prepared using 1-allylpiperazine (1-ALPP) as the functional monomer, trimethyltrimethacrylate (TRIM) as the crosslinker and the zearalenone (ZON)-mimicking template cyclododecanyl-2,4-dihydroxybenzoate (CDHB) has been applied to the clean-up and preconcentration of this mycotoxin (zearalenone) and a related metabolite, alpha-zearalenol (alpha-ZOL), from cereal and swine feed sample extracts. The extraction of ZON and alpha-ZOL from the food samples was accomplished using pressurized liquid extraction (PLE) with MeOH/ACN (50:50, v/v) as the extraction solvent, at 50 degrees C and 1500 psi. The extracted samples were cleaned up and preconcentrated through the MIP cartridge and analyzed using HPLC with fluorescence detection (lambda (exc)=271/ lambda (em)=452 nm). The stationary phase was a polar endcapped C18 column, and ACN/MeOH/water 10/55/35 (v/v/v, 15 mM ammonium acetate) at a flow rate of 1.0 mL min(-1) was used as the mobile phase. The method was applied to the analysis of ZON and alpha-ZOL in wheat, corn, barley, rye, rice and swine feed samples fortified with 50, 100 and 400 ng g(-1) of both mycotoxins, and it gave recoveries of between 85 and 97% (RSD 2.1-6.7%, n=3) and 87-97% (RSD 2.3-5.6%, n=3) for alpha-ZOL and ZON, respectively. The method was validated using a corn reference material for ZON.  相似文献   

4.
《Supramolecular Science》1998,5(3-4):417-421
Polymeric receptors for cholesterol were synthesized by crosslinking β-cyclodextrin (β-CyD) with hexamethylene diisocyanate or toluene 2,4-diisocyanate in dimethyl sulfoxide (DMSO) in the presence of cholesterol as the template. Non-imprinted β-CyD polymers were much poorer in the cholesterol adsorption. When β-CyD was cross-linked by epichlorohydrin in aqueous alkaline solutions (even in the presence of cholesterol), the cholesterol adsorbing activity was nil. Use of DMSO as the cross-linking solvent is necessary for the imprinting, since β-CyD molecules form inclusion complexes with cholesterol in this solvent and thus their mutual conformation in the polymer is regulated appropriately for cholesterol binding. The adsorbed cholesterol was completely removed from the polymers by treating the adducts with ethanol, indicating a strong potential for practical applications.  相似文献   

5.
The selective preconcentration of estradiol was explored using the recognition ability of a molecularly imprinted polymer (MIP) in the solid phase extraction (SPE) format. Polymeric particles were imprinted with 17β-estradiol using methacrylic acid as functional monomer and divinylbenzene as crosslinker. Binding studies of these polymeric particles towards 17β-estradiol showed selectivity over non-imprinted polymers, using acetonitrile as solvent. The imprinted polymer showed a recovery of 88% for β-estradiol in deionized water and 81% in surface water. The selectivity of the MIP over the non-imprinted polymer was relatively low, only 10% higher recovery. The results indicate that the MIP imprinted with 17β-estradiol does not appear to provide a viable approach to be used in a sample clean-up or enrichment step for the determination of estradiol in aqueous systems.  相似文献   

6.
In this research, a novel strategy was developed to prepare molecularly imprinted polymer (MIP) coated solid-phase microextraction fibers on a large scale with Sudan I as template and stainless steel fibers as substrate. More than 20 fibers could be obtained in one glass tube, and the efficiency and coating repeatability were enhanced remarkably in contrast with the yield of only one fiber in our previous works. The obtained MIP-coated stainless steel fibers were characterized by homogeneous and highly cross-linked coating, good chemical and thermal stabilities, high extraction capacities, and specific selectivities to Sudan I–IV dyes. Based on the systemic optimization of extraction conditions, a simple and cost-effective method based on the coupling of MIP-coated SPME with high-performance liquid chromatography was developed for the fast and selective determination of trace Sudan I–IV dyes in hot chili powder and poultry feed samples. The limits of detection of Sudan I–IV dyes were within 2.5–4.6 ng g?1, and the spiked recoveries were in the range of 86.3–96.3% for hot chili powder sample and 84.6–97.4% for poultry feed sample.  相似文献   

7.
The use of a novel procedure of solid-phase extraction with molecularly imprinted polymers (MISPE) has been described. A MISPE procedure relying on tailor-made, artificial-mimic materials capable of selectively rebinding target analytes (steroids) based on a combination of recognition mechanisms, such as size, shape and functionality, was custom designed for progesterone and testosterone. The combination of MISPE with LC/DAD is a simple and an efficient method for the determination and quality control of progesterone and testosterone in human urine samples.  相似文献   

8.
The scintillating polymer inclusion membrane (S-PIM) was developed for preconcentration and determination of α-emitting actinides from aqueous solution. The preparation of S-PIM involved physical immobilization of an extractant bis(2-ethylhexyl)phosphoric acid, primary scintillator 2,5-diphenyloxazole, and secondary scintillator 1,4-bis(2-methylstyryl)benzene in the plasticized cellulose triacetate matrix. The S-PIM was found to be effective for the quantitative sorption (94-98%) of trivalent lanthanides/actinides (, and ), tetravalent actinides (Pu(IV)) and hexavalent actinides (U(VI)) from the aqueous solutions whose acidity had been adjusted to pH 2.5, 1.0 and 0.25 mol/L, respectively with dilute HNO3. The interference of β-emitting lanthanides, in preconcentration and determination of α-emitting actinides using S-PIM, were also studied. The α-scintillation counting efficiency in the S-PIM was found to be 92-95% after discriminating the background noise. However, β-scintillation counting efficiency was found to be in the range of 12-25% depending upon the energy of β-particles. It was observed that β-scintillation pulses from and could be discriminated based on pulse height analysis. Thus, α-activities of the actinides sorbed in the sample of S-PIM could be directly measured in the presence of β-emitters by scintillation counting. However, the α-scintillation counting efficiency was reduced to 38% after discriminating β-scintillation pulses in the S-PIM. The preconcentration ability of S-PIM was examined in tap water and seawater spiked with . The total α-activity of 46 Bq (present in 100 mL) could be preconcentrated and measured from tap water using S-PIM.  相似文献   

9.
The use of molecularly imprinted polymers (MIPs) for solid phase extraction (MISPE) allows a rapid and selective extraction compared with traditional methods. Determination of Δ9-tetrahydrocannabinol (THC) and 11-nor-Δ9-tetrahydrocannabinol carboxylic acid (THC-COOH) in oral fluid (OF) and urine was performed using homemade MISPEs for sample clean-up and liquid chromatography tandem mass spectrometry (LC-MS/MS). Cylindrical MISPE shaped pills were synthesized using catechin as a mimic template. MISPEs were added to 0.5 mL OF or urine sample and sonicated 30 min for adsorption of analytes. For desorption, the MISPE was transfered to a clean tube, and sonicated for 15 min with 2 mL acetone:acetonitrile (3:1, v/v). The elution solvent was evaporated and reconstituted in mobile phase. Chromatographic separation was performed using a SunFire C18 (2.5 μm; 2.1?×?20 mm) column, and formic acid 0.1 % and acetonitrile as mobile phase, with a total run time of 5 min. The method was fully validated including selectivity (no endogenous or exogenous interferences), linearity (1–500 ng/mL in OF, and 2.5–500 ng/mL in urine), limit of detection (0.75 and 1 ng/mL in OF and urine, respectively), imprecision (%CV <12.3 %), accuracy (98.2–107.0 % of target), extraction recovery (15.9–53.5 %), process efficiency (10.1–46.2 %), and matrix effect (<?55 %). Analytes were stable for 72 h in the autosampler. Dilution 1:10 was assured in OF, and Quantisal? matrix effect showed ion suppression (<?80.4 %). The method was applied to the analysis of 20 OF and 11 urine specimens. This is the first method for determination of THC and THC-COOH in OF using MISPE technology.  相似文献   

10.
Zhang Z  Tan W  Hu Y  Li G 《Journal of chromatography. A》2011,1218(28):4275-4283
In this paper, an efficient and sensitive analytical method for the simultaneous determination of three trace sterols including ergosterol, stigmasterol and β-sitosterol in complicated biological samples was developed by gas chromatography-mass spectrometry (GC-MS) coupled with extraction using novel β-sitosterol magnetic molecularly imprinted polymer (mag-MIP) beads. Physical tests suggested that β-sitosterol mag-MIP beads prepared by a rapid microwave synthesis method possessed the porous morphology, narrow size distribution, stable chemical and thermal property. Due to the greatly enlarging surface area and the strong recognition to the target molecules, β-sitosterol mag-MIP beads have a higher enrichment factor for β-sitosterol (~20-fold) and the higher selectivity for β-sitosterol and its analogs than that of β-sitosterol magnetic nonimprinted polymer (mag-NIP) beads. Under the optimum analytical conditions, all the target compounds achieved good chromatographic separation and sensitive detection without matrix interference. It was interesting that three target sterols were actually found in mushroom samples, and stigmasterol and β-sitosterol were actually found in serum and watermelon samples. The recoveries of spiked sample tests were in range of 71.6-88.2% with RSDs of 2.4-10.0% (n=3). This method is reliable and applicable for the simultaneous determination of trace sterols in real biological samples based on the β-sitosterol mag-MIP bead extraction.  相似文献   

11.
A simple, fast, and sensitive method for determination of 17 β-estradiol (E2) in goat milk samples has been developed by combining selective molecularly imprinted matrix solid-phase dispersion (MIP–MSPD) and liquid chromatography with diode-array detection (DAD). The molecularly imprinted polymer was synthesized by use of 17β-estradiol as template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker monomer, azobisisobutyronitrile as initiator, and acetonitrile as porogen, and was used as selective solid support for matrix solid-phase dispersion. The selected dispersant had high affinity for E2 in the goat milk matrix and the extract obtained was sufficiently clean for direct injection for HPLC analysis without any interferences from the matrix. The proposed MIP–MSPD method was validated for linearity, precision, accuracy, decision limit (CCα) and detection capability (CCβ), in accordance with European Commission Decision 2002/657/EC criteria. Linearity ranged from 0.3–10 μg g?1 (correlation coefficient r 2?>?0.999). Mean recovery of E2 from goat milk samples at different spiked levels was between 89.5 and 92.2%, with RSD values within 1.3–2%. CCα and CCβ values were 0.36 and 0.39 μg g?1, respectively. The developed MIP–MSPD method was successfully applied to direct determination of E2 in goat milk samples.
Figure
Determination of 17β-Estradiol by using a MIP-MSPD method in goat milk sample  相似文献   

12.
In this study, we report the synthesis of MIP-coated hybrid NPs by “semi-covalent” imprinting technique throught a thermally reversible covalent bond and application for biochemical separation of β-estradiol (E2). A moleculary imprinted polymer (MIP) were synthesized using 3-(triethoxysilyl) propyl isocyanate and dibutyltin dilanurate as a functional monomer and cross-linking agent and β-estradiol as template. The removal of the template by a simple thermal reaction produced specific β-estradiol recognition sites on the surface of silica shell. Meanwhile, a solid-phase extraction (SPE) based on E2- MMIPs has been established for efficient separation and fast enrichment of E2 from the plasma. Recoveries of E2 from two kinds of plasma spiked at different concentration levels ranged from 86.9 to 103.3 with RSD <1.76 %.In this manner LOD was 0.0019 and LOQ was 0.0057 (µmol L?1), capacity factor and selectivity factor were 3.05 and 1.099 respectively. Also E2- MMIPs was used for selective separation of E2 from drugs mixture.  相似文献   

13.
14.
A new molecularly imprinted polymer was synthesized with malachite green (MG) as molecular template, methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and azobisisobutyronitrile (AIBN) as initiator. Recognition properties of the MG imprinted polymer were studied by equilibrium adsorption and HPLC. The results showed that the imprinted polymer had good affinity and marked selectivity for MG, and can separate MG with its analogue commendably. The new polymer can be used for the enrichment of MG in complex sample, and can work as separation media to separate and detect MG by HPLC.  相似文献   

15.
The original version of the article was published in Cent. Eur. J. Chem., Vol. 8(3), (2010), pp. 687–695. Unfortunately, the original version of this article contains mistakes in the Authors names section. There should be: Saman Azodi-Deilami1, Majid Abdouss1 and S. Rezvaneh Seyedi2.  相似文献   

16.
An improved multiple co-polymerization technique was developed to prepare a novel molecularly imprinted polymer (MIP)-coated solid-phase microextraction (SPME) fiber with propranolol as template. Investigation was performed for the characteristics and application of the fibers. The MIP coating was highly crosslinked and porous with the average thickness of only 25.0 μm. Consequently, the adsorption and desorption of β-blockers within the MIP coating could be achieved quickly. The specific selectivity was discovered with the MIP-coated fibers to propranolol and its structural analogues such as atenolol, pindolol, and alprenolol. In contrast, only non-specific adsorption could be shown with the non-imprinted polymer (NIP)-coated fibers, and the extraction efficiencies of propranolol and pindolol with the MIP-coated fibers were higher markedly than that with the commercial SPME fibers. A MIP-coated SPME coupled with high-performance liquid chromatography (HPLC) method for propranolol and pindolol determination was developed under the optimized extraction conditions. Linear ranges for propranolol and pindolol were 20–1000 μg L−1 and detection limits were 3.8 and 6.9 μg L−1, respectively. Propranolol and pindolol in the spiked human urine and plasma samples, extracted with organic solvent firstly, could be simultaneous monitored with satisfactory recoveries through this method.  相似文献   

17.
Zhang Y  Li Y  Hu Y  Li G  Chen Y 《Journal of chromatography. A》2010,1217(47):7337-7344
Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70.1-93.5%. The results show that the present imprinting method is a promising approach for preparation of selective adsorbents for sample preparation of auxin analysis in plant tissues.  相似文献   

18.
Surface reversible addition-fragmentation chain transfer (RAFT) polymerization method was firstly applied to the preparation of molecularly imprinted polymer (MIP) coated silicon solid-phase microextraction (SPME) fibers. With Sudan I as template, an ultra-thin MIP coating with about 0.55-μm thickness was obtained with homogeneous structure and controlled composition, due to the controllable radical growing and chain propagation in surface RAFT polymerization. The MIP-coated fibers were found with enhanced selectivity coefficients (3.0–6.5) to Sudan I–IV dyes in contrast with those reported in our previous work. Furthermore, the ultra-thin thickness of MIP coating was helpful to the effective elution of template and fast adsorption/desorption kinetics, so only about 18 min was needed for MIP-coated SPME operation. The detection limits of 21–55 ng L−1 were achieved for four Sudan dyes, when MIP-coated SPME was coupled with liquid chromatography (LC) and mass spectrometry (MS) detection. The MIP-coated SPME–LC–MS/MS method was tested for the monitoring of ultra trace Sudan dyes in spiked chilli tomato sauce and chilli pepper samples, and high enrichment effect, remarkable matrix peaks-removing capability, and consequent high sensitivities were achieved to four Sudan dyes.  相似文献   

19.
To assess the potential risks associated with the environmental exposure of β-lactam antibiotics (BLAs), the monitoring of the occurrence, distribution, and fate of these emerging contaminants in the environment is required. Herein, we demonstrate a molecularly imprinted solid-phase extraction (MISPE) method for selective and reliable screening of trace BLAs in river and tap water. By developing a low-temperature photopolymerization, highly selective molecularly imprinted polymers (MIPs) for five BLAs (penicillin G, amoxicillin, ampicillin, nafcillin and mezlocillin) were synthesized. Nafcillin was chosen as a pseudo template to make the MIP sorbent (Nafc-MIP), which was used in pseudo-template MISPE for preconcentration of the other four BLAs from river and tap water. The application of pseudo-template MISPE overcomes the template bleeding, which significantly elevates the sample background and restricts the application of MIP for detection of the target BLA below 2 μg/L. The average recoveries of BLAs are in the range of 60–90% when Nafc-MIP was adopted as the selective MISPE sorbent. The developed method was validated, and applied to the screening of trace β-lactam antibiotics in river and tap water. The linearity of the calibration curve for each BLA was observed over the range of 0.1–20 μg/L (r > 0.998). The β-lactam antibiotics were found within the range of 0–9.56 μg/L in river water at the downstream of antibiotics manufacturers, and none were detected in the tap water.  相似文献   

20.
Titanate sol–gel layers imprinted with midchain carbonic acids have proven highly useful for detecting engine oil degradation processes owing to selective incorporation of oxidised base oil components. Synthesising the material from TiCl4 in CCl4 and precipitating with water leads to imprinted TiO2 nanoparticles with a diameter of 200–300 nm. Replacing the water by a 1 M ammonium hydroxide solution reduces the average particle size to 50–100 nm with retention of the interaction capabilities. Experiments with the latter solution revealed that the 100-nm particles take up substantially more analyte, indicating a size-dependent phenomenon. As the number of interaction sites within each material is the same, this cannot be a consequence of thermodynamics but must be one of accessibility. The sensor characteristic of water-precipitated particles towards engine oil degradation products shows substantially increased sensitivity and dynamic range compared with the corresponding thin films. Coating quartz crystal microbalances with such nanoparticle materials leads to engine oil degradation sensors owing to incorporation of acidic base oil oxidation products. Interaction studies over a large range of layer thicknesses revealed that both the absolute signal and the steepness of the correlation between the sensor signal and the layer height is 2 times higher for the particles. Figure Generation of molecularly imprinted sol–gel nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号