首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Reflected high-energy electron diffraction (RHEED) and detection of the intensity oscillations of the specular reflection have been used to investigate morphological changes in Si(111) associated with the two-dimensional layer-by-layer mechanism of silicon growth from a molecular beam under conditions of pulsed (0.25–1 s) bombardment with low-energy (80–150 eV) Kr ions in the interval of small total radiative fluxes (1011–1012 cm22), for which the density of radiation-generated defects is small in comparison with the surface density of the atoms. After pulsed ion bombardment an increase in the intensity of the specular reflection is observed if the degree of filling of the monolayer satisfies 0.5<θ<1. No increase in the intensity occurs during the initial stages of filling of the monolayer. The maximum amplitude increment of the oscillations is reached at θ≈0.8. The magnitude of the amplitude increment of the RHEED oscillations increases with temperature up to 400°C and then falls. At temperatures above 500°C amplification of the reflection intensity essentially vanishes. Experiments on multiple ion bombardment of each growing layer showed that the magnitude of the amplitude increment of the oscillations decreased as a function of the number of deposited layers (the order of the RHEED oscillation). A mechanism for the observed phenomena is proposed, based on the concept of surface reconstruction by pulsed ion bombardment accompanied by formation of a (7×7) superstructure, which corresponds to a decrease of the activation energy of surface diffusion of the adatoms. Within the framework of the proposed mechanism the results of Monte Carlo modeling agree with the main experimental data. Zh. éksp. Teor. Fiz. 114, 2055–2064 (December 1998)  相似文献   

2.
The growth process of silver on a Si(111) substrate has been studied in detail by low-energy ion-scattering spectroscopy (ISS) combined with LEED-AES. Neon ions of 500 eV were used as probe ions of ISS. The ISS experiments have revealed that the growth at room temperature and at high temperature are quite different from each other even in the submonolayer coverage range. The following growth models have been proposed for the respective temperatures. At room temperature, the deposited Ag forms a two-dimensional (2D) island at around 2/3 monolayer (ML) coverage, where the Ag atoms are packed commensurately with the Si(111)1 substrate. One third of the substrate Si surface remains uncovered there. Then it starts to develop into Ag crystal, and at a few ML coverage a 3D island of bulk Ag crystal grows directly on the substrate. An intermediate layer, which covers uniformly the whole surface before the growth of Ag crystal, does not exist. At high temperatures (>~200°C), the well-known Si(111)√3-Ag layer is formed as an intermediate layer, which consists of 2/3 ML of Ag atoms and covers the whole surface uniformly. These Ag atoms are embedded in the first double layer of the Si substrate. It is concluded that the formation of the √3 structure needs relatively high activation energy which may originate from the large displacement of Si atoms owing to the embedment of the Ag atoms, and does not proceed below about 200°C. The most stable state of the Ag atoms on the outermost Si layer is in the shape of an island, both for the Si(111) surface and for the Si(111)√3-Ag surface.  相似文献   

3.
4.
The kinetics of deposition for monomolecular submonolayer films on a Si(111) surface is studied via low-energy electron diffraction with measurements of the intensities of diffraction reflection and the elastic background. The degree of structural perfection in growing films is estimated for alkali-metal silicides and silicon from low-energy beams. The optimum energy and dose intervals of silicide film formation are determined.  相似文献   

5.
The adsorption of O2 and CO on the Si(111) surface was studied by low-energy helium ion scattering. The adsorption consists of a fast adsorption stage followed by a much slower Sorption process. In the final uptake region CO has a faster rate of increase than O. There is no evidence of He+ scattering from C atoms. This fact excludes the CO molecule having its axis parallel to the surface. A comparison of the intensities of the substrate (Si) signals, for the same recorded oxygen content on the surface, shows that carbon monoxide shadows the Si atoms more than oxygen does. An increase in the oxygen signal was observed even after exposures in the range of 1014–1015 molecules cm?2. No substantial diffusion of CO into the bulk can be deduced from these results. Desorption of oxygen by He+ ions was observed by following the adsorbate and substrate signals as a function of time. The sputtering cross-section has a maximum for an impact angle of 25° relative to the surface.  相似文献   

6.
The formation of nanosize silicides films by implantation of B, P, Ba, and alkali metal atoms in Si(111) and Si(100) followed by thermal annealing is studied by electron spectroscopy and slow-electron diffraction methods. It is shown that implantation of ions with a large dose D > 1016 cm?2 and short-term heating lead to the formation of thin silicides films with new surface superstructures: \(Si(111) - (\sqrt 3 \times \sqrt 3 )R30^ \circ - B\) , Si(100)-2 × 2Ba, Si(111)-1 × 1P, etc.  相似文献   

7.
The room temperature self-assembly and ordering of (5,15-diphenylporphyrinato)nickel(II) (NiDPP) on the Ag(111) and Ag/Si(111)-(√3 × √3)R30° surfaces have been investigated using scanning tunnelling microscopy and low-energy electron diffraction. The self-assembled structures and lattice parameters of the NiDPP monolayer are shown to be extremely dependent on the reactivity of the substrate, and probable molecular binding sites are proposed. The NiDPP overlayer on Ag(111) grows from the substrate step edges, which results in a single-domain structure. This close-packed structure has an oblique unit cell and consists of molecular rows. The molecules in adjacent rows are rotated by approximately 17° with respect to each other. In turn, the NiDPP molecules form three equivalent domains on the Ag/Si(111)-(√3 × √3)R30° surface, which follow the three-fold symmetry of the substrate. The molecules adopt one of three equivalent orientations on the surface, acting as nucleation sites for these domains, due to the stronger molecule-substrate interaction compared to the case of the Ag(111). The results are explained in terms of the substrate reactivity and the lattice mismatch between the substrate and the molecular overlayer.  相似文献   

8.
9.
10.
A study of the mechanism governing the initial stages in silicide formation under deposition of 1–10 monolayers of cobalt on a heated Si(111) 7×7 crystal is reported. The structural data were obtained by an original method of diffraction of inelastically scattered medium-energy electrons, which maps the atomic structure of surface layers in real space. The elemental composition of the near-surface region to be analyzed was investigated by Auger electron spectroscopy. Reactive epitaxy is shown to stimulate epitaxial growth of a B-oriented CoSi2(111) film on Si(111). In the initial stages of cobalt deposition (1–3 monolayers), the growth proceeds through island formation. The near-surface layer of a CoSi2(111) film about 30 Å thick does not differ in elemental composition from the bulk cobalt disilicide, and the film terminates in a Si-Co-Si monolayer triad.  相似文献   

11.
Epitaxial layers of GaAs grown on Si substrates, where the layer thickness greatly exceeds any critical thickness based on mismatch in lattice constant alone, have been shown to be under tensile strain for temperature at or below 300 K. This "thermal" strain arises from the difference in thermal expansion coefficients between GaAs and Si. We have performed Raman experiments on GaAs layers grown on both Si (001) and Si (111) substrates. We have observed a shift in the optical modes towards lower frequencies which is indicative of tensile strain in the GaAs layers, this is greater in the (111) growth direction than in the (001) one. In order to investigate the strain distribution as a function of distance from the GaAs/Si interface we have measured Raman spectra after successive removing of the epitaxial layer by chemical etching. We have found out that the strain decreases with increasing distance from the interface. We have developed the theory of Cerdeira et al. (1) to determine quantitatively the strain present in the heteroepitaxial layers. We have used, for the first time, polarization selection rules to separate the various components of the optical phonon modes. According to the theory we have observed that the doubly degenerate TO phonon line exhibits both a splitting and shift with strain, while only a shift is observed for the LO phonon line. In conformity with Cerdeira we have remarked that the strain dependence of the LO phonon is equal to that of the TO phonon mode observed in crossed polarization configuration.  相似文献   

12.
The interaction of S2 with Ag(111) under ultra-high vacuum conditions has been investigated by medium energy ion scattering (MEIS). 100 keV He+ MEIS measurements provide a direct confirmation of a previous report, based on thermal desorption, that the growth of multilayer films of Ag2S occurs through a continuous corrosion process. These films show a commensurate (√7 × √7)R19° unit mesh in low energy electron diffraction, consistent with the epitaxial growth of (111) layers of the high-temperature F-cubic phase of Ag2S. The substantial range of co-existing film thicknesses found indicates that the growth must be in the form of variable-thickness islands. The use of 100 keV H+ incident ions leads to a very rapid decrease in the sulphide film thickness with increasing exposure that we attribute to an unusual chemical leaching, with implanted H atoms interacting with S atoms and desorption of H2S from the surface.  相似文献   

13.
14.
The nucleation of Si on Si(111) has been studied during deposition in UHV by spot profile analysis of low energy electron diffraction (SPA-LEED). A new method of evaluation is developed by separating the measured spot profile into a central spike and a broad shoulder. The energy dependence of the fraction of the central spike out of the total diffracted intensity provides the vertical distribution of surface atoms over different levels. With this method it is shown that the first nucleation occurs in islands of double height. Only after deposition of several layers a layer-by-layer growth is found with a well defined nucleation of a new layer before the former one is completed.  相似文献   

15.
The crystal structure of GaAs nanowhiskers grown by molecular-beam epitaxy on Si(111) and Si(100) substrates is investigated using reflection high-energy electron diffraction (RHEED). It is revealed that, in both cases, the electron diffraction images contain a combination (superposition) of systems of reflections characteristic of the hexagonal (wurtzite and/or 4H polytype) and cubic (sphalerite) phases of the GaAs compound. The growth on the Si(111) substrates leads to the formation of nanowhiskers with hexagonal (wurtzite and/or 4H polytype) and cubic (sphalerite) structures with one and two orientations, respectively. In the case of the Si(100) substrates, the grown array contains GaAs nanowhiskers that have a cubic structure with five different orientations and a hexagonal structure with eight orientations in the (110) planes of the substrate. The formation of the two-phase crystal structure in nanowhiskers is explained by the wurtzite—sphalerite phase transitions and/or twinning of crystallites.  相似文献   

16.
《Surface science》1989,209(3):L139-L143
Low energy electron diffraction (LEED), angle-resolved ultraviolet (ARUPS), and X-ray (XPS) photoemission spectroscopy and work function measurements were used to investigate the growth of epitaxial CrSi2 on a Si(111) surface. The CrSi2layers ) (~ 100 Å) are formed by the MBE technique, in which Cr and Si are coevaporated in their stoichiometric ratio on the Si(111) substrate maintained at ~450°C. In comparison with the CrSi2 epitaxy previously obtained by the SPE technique, where two kinds of CrSi2 domains with equal formation probability are always observed, the epitaxial CrSi2 layers obtained by the MBE technique essentially present one definite orientation characterized by CrSi2(0001)∥Si(111) and CrSi2[112&#x0304;0] ∥[112&#x0304;].  相似文献   

17.
Deposits of Ag on Si(111), at room temperature, have yielded a linear Auger signal-time characteristic to a gradient break point at (7.6 ± 0.9) × 1014 atoms ofAg cm?2, which is very close to the Si surface state density of (8–10) × 1014 cm?2, and which supports a Stranski-Krastanov growth mechanism. Analysis of the Auger spectra at the monolayer end point revealed a new peak at 82 ± 1 eV. This peak is believed to arise from an Auger process involving an induced Ag-Si interface state. A model is proposed for this state arising from the chemisorption of Ag on Si.  相似文献   

18.
19.
20.
The energy levels of some specific forms of screened Coulomb potential, as a function of the perturbation parameter λ, are shown to have a branch cut along the negative real axis, and singularities on the second sheet along |λ| e±(32)iπ for |λ| → 0. As a consequence, the energy levels have an asymptotic series in λ, which cannot be used to describe the energy levels to an arbitrary accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号