首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the unusual nature of the nu=0 state in the integer quantum Hall effect (QHE) in graphene and show that electron transport in this regime is dominated by counterpropagating edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity rho(xx) > or approximately h/e(2), in striking contrast to rho(xx) behavior in the standard QHE. The nu=0 state in graphene is also predicted to exhibit pronounced fluctuations in rho(xy) and rho(xx) and a smeared zero Hall plateau in sigma(xy), in agreement with experiment. The existence of gapless edge states puts stringent constraints on possible theoretical models of the nu=0 state.  相似文献   

2.
We present a theory of the anomalous Hall effect in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity sigma(AH)(xy). We show that sigma(AH)(xy) is proportional to the first derivative of the density of states varrho(epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that sigma(AH)(xy) depends on temperature as the longitudinal conductivity sigma(xx) within logarithmic accuracy.  相似文献   

3.
We use a general diagrammatic formalism based on a local conductivity approach to compute electronic transport in continuous media with long-range disorder, in the absence of quantum interference effects. The method allows us then to investigate the interplay of dissipative processes and random drifting of electronic trajectories in the high-temperature regime of quantum Hall transitions. We obtain that the longitudinal conductance σ(xx) scales with an exponent κ=0.767±0.002 in agreement with the value κ=10/13 conjectured from analogies to classical percolation. We also derive a microscopic expression for the temperature-dependent peak value of σ(xx), useful to extract κ from experiments.  相似文献   

4.
We report quantum Hall experiments on the plateau-insulator transition in a low mobility In(0.53)Ga(0.47)As/InP heterostructure. The data for the longitudinal resistance rho(xx) follow an exponential law and we extract a critical exponent kappa = 0.55+/-0. 05 which is slightly different from the established value kappa = 0. 42+/-0.04 for the plateau transitions. Upon correction for inhomogeneity effects, which cause the critical conductance sigma(*)(xx) to depend marginally on temperature, our data indicate that the plateau-plateau and plateau-insulator transitions are in the same universality class.  相似文献   

5.
By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction to the Hall coefficient.  相似文献   

6.
We have measured the diagonal conductivity, sigma(xx), in the microwave regime of an ultrahigh mobility two dimensional electron system. We find a sharp resonance in Re[sigma(xx)] versus frequency when nu>4 and the partial filling of the highest Landau level, nu(*), is approximately 1/4 or 3/4 and temperatures <0.1 K. The resonance appears for a range of nu(*) from 0.20 to 0.38 and again from 0.64 to 0.80. The peak frequency f(pk) changes from approximately 500 to approximately 150 MHz as nu(*)=1/2 is approached. This range of f(pk) shows no dependence on nu where the resonance is observed. The quality factor, Q, of the resonance is maximum at about nu(*)=0.25 and 0.74. We interpret the resonance as due to a pinning mode of the bubble phase crystal.  相似文献   

7.
Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and quantized Hall effects that have recently attracted theoretical and experimental attention. We study the Fermi energy and disorder dependence of its spin Hall conductivity sigma(xy)(SH). In the metallic regime we find that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to sigma(xy)(SH) values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even when the spin-orbit gap does not survive disorder.  相似文献   

8.
We have observed quantization of the diagonal resistance, R(xx), at the edges of several quantum Hall states. Each quantized R(xx) value is close to the difference between the two adjacent Hall plateaus in the off-diagonal resistance, R(xy). Peaks in R(xx) occur at different positions in positive and negative magnetic fields. Practically all R(xx) features can be explained quantitatively by a 1%/cm electron density gradient. Therefore, R(xx) is determined by R(xy) and unrelated to the diagonal resistivity rho(xx). Our findings throw an unexpected light on the empirical resistivity rule for 2D systems.  相似文献   

9.
Infrared ( 20-120 and 900-1100 cm(-1)) Faraday rotation and circular dichroism are measured in high- T(c) superconductors using sensitive polarization modulation techniques. Optimally doped YBa2Cu3O7 thin films are studied at temperatures in the range ( 15相似文献   

10.
The anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) are experimentally investigated in a variety of ferromagnetic metals including pure transition metals, oxides, and chalcogenides, whose resistivities range over 5 orders of magnitude. For these ferromagnets, the transverse conductivity sigma{xy} versus the longitudinal conductivity sigma{xx} shows a crossover behavior with three distinct regimes in accordance qualitatively with a recent unified theory of the intrinsic and extrinsic AHE. We also found that the transverse Peltier coefficient alpha{xy} for the ANE obeys the Mott rule. These results offer a coherent and semiquantitative understanding of the AHE and ANE to an issue of controversy for many decades.  相似文献   

11.
We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of the AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of sigma(xy) induced by the localization except for the few extended states carrying Chern numbers. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore, the condition for the quantized AHE is given only by the Hall conductivity sigma(xy) without the quantum correction, i.e., /sigma(xy)/>e(2)/(2h).  相似文献   

12.
We investigate the static and dynamic Kubo Hall conductivity of a non-interacting electron system in a random potential on a torus. Considering the universal covering space of the torus the Bloch theorem is applied for rational values of the filling factor. The localisation is simulated by the assumption of bound states. The Hall conductivity at zero temperatur is shown to be topologically quantized, if the Fermi energy lies in a spectral gap or in a localisation regime. The relation to previous formulations of the topological approach to the integer quantum Hall effect (QHE) is discussed.  相似文献   

13.
Thermal transport in the mixed state of a d-wave superconductor is considered within the weak-field regime. We express the thermal conductivity, kappa(xx), and the thermal Hall conductivity, kappa(xy), in terms of the cross section for quasiparticle scattering from a single vortex. Solving for the cross section (neglecting the Berry phase contribution and the anisotropy of the gap nodes), we obtain kappa(xx)(H,T) and kappa(xy)(H,T) in surprisingly good agreement with the qualitative features of the experimental results for YBa2Cu3O6.99. In particular, we show that the simple, yet previously unexpected, weak-field behavior, kappa(xy)(H,T) approximately T squareroot [H], is that of thermally excited nodal quasiparticles, scattering primarily from impurities, with a small skew component provided by vortex scattering.  相似文献   

14.
We use spin-density-functional theory to study recently reported hysteretic magnetoresistance rho(xx) spikes in Mn-based 2D electron gases [Phys. Rev. Lett. 89, 266802 (2002)10.1103/PhysRevLett.89.266802]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum Hall ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in rho(xx), we predict hysteretic dips in the Hall resistance rho(xy). Our theory, without domain walls, satisfactorily explains the recent data.  相似文献   

15.
We report on theoretical and experimental investigations of a novel hysteresis effect that has been observed on the magnetoresistance of quantum Hall bilayer systems. Extending to these system a recent approach, based on the Thomas–Fermi–Poisson nonlinear screening theory and a local conductivity model, we are able to explain the hysteresis as being due to screening effects such as the formation of “incompressible strips”, which hinder the electron density in a layer within the quantum Hall regime to reach its equilibrium distribution.  相似文献   

16.
An analysis is made of the problem of current flow in heterophase inhomogeneous media in the quantum Hall effect regime. Duality relations are derived and expressions are obtained for the effective conductivity of inhomogeneous media over the entire range of concentrations. Local current distributions (fields) are determined in the quantum Hall effect regime.  相似文献   

17.
We have investigated scaling of anomalous Hall resistivity with longitudinal resistivity (rho(xx)) in pyrochlore type Nd2(Mo(1-x)Nb(x))2O7 with spin chirality. Scattering rate of the conduction electron on the Mo sublattice can be varied with x from band transport to polaron hopping, while keeping the two-in-two-out structure of the Nd moments intact. The anomalous part of the Hall resistivity arising from the Mo spin chirality (rho(H)(chi)) shows a clear scaling behavior with rho(xx) (rho(H)(chi) proportional to rho(xx)0.39), in accord with a recent theoretical result based on the Berry phase mechanism in the hopping conduction regime.  相似文献   

18.
We consider the conductivity sigma of graphene with negligible intervalley scattering at half filling. We derive the effective field theory, which, for the case of a potential disorder, is a symplectic-class sigma model including a topological term with theta=pi. As a consequence, the system is at a quantum critical point with a universal value of the conductivity of the order of e(2)/h. When the effective time-reversal symmetry is broken, the symmetry class becomes unitary, and sigma acquires the value characteristic for the quantum Hall transition.  相似文献   

19.
Layered singlet paired superconductors with disorder and broken time reversal symmetry are studied, demonstrating a phase diagram with charge-spin separation in transport. In terms of the average intergrain transmission and the interlayer tunneling we find quantum Hall phases with spin Hall coefficients of sigma(spin)(xy)=0,2 separated by a spin metal phase. We identify a spin metal-insulator localization exponent as well as a spin conductivity exponent of approximately 0.96. In the presence of a Zeeman term an additional sigma(spin)(xy)=1 phase appears.  相似文献   

20.
We measure the Hall conductivity, sigma(xy), on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in sigma(xy) at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for sigma(xy) quantization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号