首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Electrocatalytic proton reduction leading to the formation of adsorbed molecular hydrogen on gold nanoparticles of 1-3 and 14-16 nm diameter stabilized by 1-mercapto-undecane-11-tetra(ethyleneglycol) has been demonstrated by cyclic voltammetry using a hanging mercury drop electrode. The nanoparticles were adsorbed to the electrode from aqueous dispersion and formed robust surface layers transferrable to fresh base electrolyte solutions. Unique electrocatalytic proton redox chemistry was observed that has no comparable counterpart in the electrochemistry of bulk gold electrodes. Depending on size, the nanoparticles have a discrete number of electrocatalytically active sites for the two-electron/two-proton reduction process. The adsorbed hydrogen formed is oxidized with the reverse potential sweep. These findings represent a new example of qualitative different behavior of nanoparticles in comparison with the corresponding bulk material.  相似文献   

2.
Mesomorphic alkyne-based first- and second-generation dendrons were grafted onto gold nanoparticles carrying azide groups under click reaction conditions. The nanoparticles decorated with the dendrons displayed liquid-crystalline properties and good thermal stability.  相似文献   

3.
Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications. Health-related applications of gold nanoparticles rely on the physical and chemical reactions between molecules and gold nanoparticles. Surface chemistry can precisely control and tailor the surface properties of gold nanoparticles to meet the needs of applications. Gold nanoparticles have unique physical and chemical properties, and have been used in a broad range of applications from prophylaxis to diagnosis and treatment. The surface chemistry of gold nanoparticles plays a crucial role in all of these applications. This minireview summarizes these applications from the perspective of surface chemistry and explores how surface chemistry improves and imparts new properties to gold nanoparticles for these applications.

Functionalization of gold nanoparticles is crucial for the effective utilization of these materials in health-related applications.  相似文献   

4.
A facile and green synthetic approach for fabrication of starch-stabilized magnetite nanoparticles was implemented at moderate temperature. This synthesis involved the use of iron salts, potato starch,sodium hydroxide and deionized water as iron precursors, stabilizer, reducing agent and solvent respectively. The nanoparticles(NPs) were characterized by UV-vis, PXRD, HR-TEM, FESEM, EDX, VSM and FT-IR spectroscopy. The ultrasonic assisted co-precipitation technique provides well formation of highly distributed starch/Fe_3O_4-NPs. Based on UV–vis analysis, the sample showed the characteristic of surface plasmon resonance in the presence of Fe_3O_4-NPs. The PXRD pattern depicted the characteristic of the cubic lattice structure of Fe_3O_4-NPs. HR-TEM analysis showed the good dispersion of NPs with a mean diameter and standard deviation of 10.68 4.207 nm. The d spacing measured from the lattice images were found to be around 0.30 nm and 0.52 nm attributed to the Fe3O4 and starch, respectively. FESEM analysis confirmed the formation of spherical starch/Fe_3O_4-NPs with the emission of elements of C, O and Fe by EDX analysis. The magnetic properties illustrated by VSM analysis indicated that the as synthesized sample has a saturation magnetization and coercivity of 5.30 emu/g and 22.898 G respectively.Additionally, the FTIR analysis confirmed the binding of starch with Fe_3O_4-NPs. This method was cost effective, facile and eco-friendly alternative for preparation of NPs.  相似文献   

5.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

6.
7.
8.
Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs–PANI) via the direct electroreduction of the adsorbed AuCl 4 - ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs–PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0.8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability.
Gold nanoparticles decorated polyaniline (GNPs-PANI) was prepared via electrosynthesis. The GNPs-PANI composite showed good catalytic activity toward the oxidation of dopamine.  相似文献   

9.
Novel premises of ‘Green Nanotechnology’ have tremendous impacts towards industrial scale revolution. The furtive extracted from natural precursors have driven to the generation of biogenic resources for the fabrication of cutting-edge nanomaterials in simple and cost-effective process. This inspection is an intension of the coupling hypothesis of Nanotechnology via ‘Green-Chemistry’ avenue. So, as to diminish the negative effects of technological applications in the health of human beings and the environment, society is focused towards a greener future. Nanoscience assures a promising future by its improvement in green chemistry to develop the 'Greenary Nanoscience and Nanotechnology'. The improvement and execution of chemical assisted processes in order to reduce the usage of harmful substances, the ‘Green Chemistry’ approach is one and only remarkable authentication, which attributed to long range surface area and higher pore volume of gold-nanoparticles. As of now, the efficient biogenic mechanism dramatically reduces the utilization and hazardous reagents have been employed to low-price natural and waste products to yield value-added nanomaterials with extensive relevance, suggesting an economical and green solution to environmental issues. In depth investigation of this critical review illustrates, novel biogenic screening platform was also conducted against antimicrobial strains and degradation of gold-nanoparticles products well explored-from selection precursors evolved from natural extracts, as well as eventually disintegration into bio-degradable yet potentially recyclable byproducts.  相似文献   

10.
There is a great current interest in developing target-specific radiopharmaceuticals for early detection of diseases and radiotherapy of cancers. This critical review will focus on the role of coordination chemistry in the development of target-specific radiopharmaceuticals. It will also discuss the recent development in technetium, copper, gallium, indium, yttrium and lanthanide chemistry, as well as analytical tools for quality control and characterization of radiolabeled small biomolecules (159 references).  相似文献   

11.
A label-free and enzyme-free demultiplexer system for the fabrication of 1:2 molecular demultiplexer with luminol functionalized gold nanoparticles (Lum-AuNPs) as signal transducers was developed for the first time. The Lum-AuNPs had both chemiluminescence (CL) activity and surface plasmon resonance property. It was found that organothiols (RSH) could easily induce the aggregation of AuNPs via strong Au–S covalent interactions in the absence of hydrogen peroxide (H2O2), generating a red shift in the absorption band of AuNPs. However, the presence of H2O2 would readily oxidize RSH to disulfide (RS-SR), and the aggregation of Lum-AuNPs did not occur due to lack of the sulfhydryl group. Meanwhile, H2O2 could react with Lum-AuNPs, producing a strong CL emission owing to the enhancement effect of RSH on AuNPs-luminol-H2O2 CL system. Thus, RSH, H2O2, absorbance ratio, and CL intensity served as the signal input, address input, and two different signal outputs of the 1:2 molecular demultiplexer, respectively.  相似文献   

12.
We have investigated the effect of the folding of DNA aptamers on the colloidal stability of gold nanoparticles (AuNPs) to which an aptamer is tethered. On the basis of the studies of two different aptamers (adenosine aptamer and K+ aptamer), we discovered a unique colloidal stabilization effect associated with aptamer folding: AuNPs to which folded aptamer structures are attached are more stable toward salt-induced aggregation than those tethered to unfolded aptamers. This colloidal stabilization effect is more significant when a DNA spacer was incorporated between AuNP and the aptamer or when lower aptamer surface graft densities were used. The conformation that aptamers adopt on the surface appears to be a key factor that determines the relative stability of different AuNPs. Dynamic light scattering experiments revealed that the sizes of AuNPs modified with folded aptamers were larger than those of AuNPs modified with unfolded (but largely collapsed) aptamers in salt solution. From both the electrostatic and steric stabilization points of view, the folded aptamers that are more extended from the surface have a higher stabilization effect on AuNP than the unfolded aptamers. On the basis of this unique phenomenon, colorimetric biosensors have been developed for the detection of adenosine, K+, adenosine deaminase, and its inhibitors. Moreover, distinct AuNP aggregation and redispersion stages can be readily operated by controlling aptamer folding and unfolding states with the addition of adenosine and adenosine deaminase.  相似文献   

13.
We used positively charged lipids to prepare lipid bilayer assemblies (LBAs) upon which we assembled negatively charged gold nanoparticles (AuNPs). Treatment of the assembly with zirconium chloride resulted in the formation of nanorings of the diameters inversely related to the zirconium ion concentration. The nanorings were attributed to the zirconium ion coordinated AuNPs formed during the lipid bilayer budding process promoted by the acid effect of zirconium chloride. Nanoring organization was also dependent on the fluidity of lipid bilayers, an indication of LBA-assisted nanomaterials organization. We suggest that such bioorganic-inorganic hybrid assemblies coupled to unique topological and morphological variations might be useful as stimuli-responsive sensors or storage compartments for proteins or drugs.  相似文献   

14.
The systematic study of activity, long-time stability and auto-digestion of trypsin immobilized onto gold nanoparticles (GNPs) is described in this paper and compared to trypsin in-solution. Thereby, the influence of GNP's size and immobilization chemistry by various linkers differing in lipophilicity/hydrophilicity and spacer lengths was investigated with regard to the bioactivity of the conjugated enzyme. GNPs with different sizes were prepared by reduction and simultaneous stabilization with trisodium citrate and characterized by UV/vis spectra, dynamic light scattering (DLS), ζ-potential measurements and transmission electron microscopy (TEM). GNPs were derivatized by self-assembling of bifunctional thiol reagents on the nanoparticle (NP) surface via dative thiol-gold bond yielding a carboxylic acid functionalized surface. Trypsin was either attached directly via hydrophobic and ionic interactions onto the citrate stabilized GNPs or immobilized via EDC/NHS bioconjugation onto the carboxylic functionalized GNPs, respectively. The amount of bound trypsin was quantified by measuring the absorbance at 280 nm. The activity of bound enzyme and its Michaelis Menten kinetic parameter Km and vmax were measured by the standard chromogenic substrate Nα-Benzoyl-DL-arginine 4-nitroanilide hydrochloride (BApNA). Finally, digestion of a standard protein mixture with the trypsin-conjugated NPs followed by analysis with LC–ESI-MS and successful MASCOT search demonstrated the applicability of the new heterogenous nano-structured biocatalyst. It could be shown that the amount of immobilized trypsin and its activity can be increased by a factor of 6 using a long hydrophilic spacer with simultaneous reduced auto-digestion and reduced digestion time. The applicability of the new trypsin bioreactor was proven by digestion of casein and identification of α- as well as κ-casein by subsequent MASCOT search.  相似文献   

15.
The gold nanoparticles (AuNPs) sputtered on indium tin oxide (ITO) were used to investigate the origin of the high catalytic activity of AuNPs toward electrooxidation of CO in alkali media. We demonstrated that the catalytic activity is closely related to the gold–ITO perimeter, which represents only a very small percentage of the total surface area of AuNPs. Increasing the perimeter-to-surface ratio of the ITO-supported AuNPs leads to an increase of catalytic activity. This work provides a potential strategy to further promote the catalytic activity of AuNPs in the electrochemical system.  相似文献   

16.
17.
Amphiphilic gold nanoparticles (AuNPs) were produced at liquid-liquid interface via ligand exchange between hydrophilic AuNPs and disulfide-containing polymer chains. By using oil droplets as templates, hybrid hollow capsules with AuNPs on the surfaces were obtained after interfacial cross-linking polymerization. The volume ratio of toluene to water exerts an important effect on the size of capsules. The average size of the capsules increases with the volume ratio. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the hollow structures. In this research, not only one-component but also multicomponent hollow capsules were prepared by copolymerization of acrylamide and hybrid AuNPs at liquid-liquid interface. Because of the improvement in hydrophilicity of the hollow capsules, the average size of multicomponent capsules is bigger than one-component ones in aqueous solution.  相似文献   

18.
Gold is an element whose unique properties are strongly influenced by relativistic effects. A large body of appropriate calculations now exist and their main conclusions are summarized. The theoretical interpretation of the aurophilic attraction is discussed in detail.  相似文献   

19.
This letter reports a serial solid-phase placement approach to synthesize anisotropically or symmetrically functionalized gold nanoparticles (AuNPs), in which the functionality and directionality (i.e., numbers, locations, and orientations) of the functional ligands are controlled. The solid-phase ligand exchange methodology using highly rigid filter papers enabled us to produce two types of bifunctionalized (bif-) AuNPs in a site-specific manner with increased yield and accuracy: (1) homobif-AuNPs with two carboxyl groups at approximately 180 degrees (para configuration) and (2) heterobif-AuNPs with one carboxyl and one amine functional groups at less than 180 degrees but greater than 90 degrees (meta configuration). Their chemical functionality was validated by 1H nuclear magnetic resonance as well as cyclic voltammetry after ferrocene ethylamine coupling reactions. The directional assemblies of 1D chains with homobif-AuNPs and 2D rings with heterobif-AuNPs were demonstrated through diamine and imidization coupling reactions, respectively, further validating their highly functional and directional selectivity, which is critical to realizing the practical nanoscale assembly.  相似文献   

20.
Thermosensitive gold nanoparticles   总被引:1,自引:0,他引:1  
Thermosensitive gold nanoparticles were fabricated by conjugating Au with a thiol-terminated poly(N-isopropylacrylamide) or PPA; this polymer stabilizer exhibits a temperature transition while undergoing a hydrophilic to hydrophobic transformation. The introduction of PPA onto gold nanoparticles has sensitized Au nanoparticles with unique temperature dependence. At low temperature (25 degrees C), the solutions containing PPA-functionalized gold nanoparticles are transparent, whereas higher temperatures (30 degrees C) lead to opaque suspensions. The thermosensitive property of PPA-functionalized Au nanoparticles is reversible, and the clear-opaque suspensions can be repeated many times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号