首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以乙二醇作为络合剂,尿素作为有机燃料,用低温燃烧法合成了CaYAlO4∶Dy3+白光发光荧光粉.XRD物相分析表明,材料烧结的最佳温度为800℃;不同保温时长的发光表明,合成材料无需保温;尿素的最佳用量与基质CaYAlO4物质的量的比为3∶1.烧结样品为哑铃型的纳米颗粒,中间部分较细,约为20 nm;底部较粗,直径约3...  相似文献   

2.
采用溶胶-凝胶法制备出Dy3+, Eu3+共掺杂Gd2ZnTiO6白光荧光粉. 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 光致发光(PL)光谱对荧光粉的物相、 形貌及荧光性质进行了表征. 结果表明, 所制备的样品均为双钙钛矿结构, 属于单斜晶系(空间群: P21/n), 形貌为2~5 μm无规则形状的颗粒. 在392 nm近紫外光的激发下, Gd2ZnTiO6∶Dy3+,Eu3+荧光粉展现出Dy3+的蓝光、 黄光发射以及Eu3+的特征红光发射. 此外, 通过调节Dy3+和Eu3+的掺杂浓度, 可实现低色温的暖白光发射. 基于样品优异的荧光性能, 该荧光粉在近紫外激发白光LED中具有一定的开发潜力.  相似文献   

3.
Ca10(Si2O7)3Cl2:Eu2+Mn2+单-基质白光荧光粉的发光性质   总被引:1,自引:0,他引:1  
用高温固相法合成了颜色可调的Ca10(Si2O7)3Cl2:Eu2+Mn2+荧光粉.研究了它的发光性质和Eu2+与Mn2+之间的能量传递.Eu2+离子在Ca10(Si2O7)3Cl2晶体中形成了峰值为426 nm和523 nm的5d→4f跃迁发光,Eu2+中心向Mn2+中心传递能量,敏化Mn2+离子4T1(4G)-6A1(6S)跃迁而产生585 nm的黄光发射.黄绿蓝3个发射带叠加在单一基质中实现了白光发射.3个发射带的激发谱范围位于250-480 nm处,Ca10(Si2O7)3Cl2:Eu2+Mn2+在紫外-近紫外波段(350~410 nm)范围内有很强的激发,是一种适合InGaN管芯激发的单一基质白光LED荧光粉.  相似文献   

4.
纳米Ca0.8Zn0.2TiO3∶Pr3+, Na+荧光粉的合成和红色发光性质   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在较低温度下合成了Ca0.8Zn0.2TiO3∶Pr^3+,Na^+纳米荧光粉.金属离子预先分散在溶有柠檬酸的乙二醇溶液中.通过TG-DSC,XRD和SEM对前驱物的分解、晶化和颗粒大小进行了研究.TG-DSC和XRD表明材料的组成随灼烧温度而变化;SEM表明1000 ℃合成材料的粒径在100 nm以下.与高温固相法合成的材料相比,激发光谱主峰发生蓝移,红色发射峰617 nm显著增强.  相似文献   

5.
采用高温固相法制备了KLa(MoO4)2∶Eu3+红色荧光粉,对其物相结构、光谱性质进行了分析,研究了Eu3+的不同掺杂浓度对荧光粉的发光性能的影响,同时对其色坐标进行了分析.结果表明,KLa(MoO4)2为体心对称的单斜相;KLa(MoO4)2∶Eu3+荧光粉中Eu3+的最佳掺杂浓度为9%,当掺杂浓度大于9%出现浓度猝灭现象,出现这一现象的主要原因是由于交换作用导致Eu3+之间能量的转移.  相似文献   

6.
作为绿色照明光源的典型代表,白光发光二极管(LED)被誉为21世纪的新一代照明光源。而作为白光LED重要组成部分的荧光粉,对其性能要求也不断被提升。Eu~(2+)和Eu~(3+)由于其电子结构上的差别导致其截然不同的发光性质。其中,Eu~(2+)的特征发射为4f–4f跃迁,而Eu~(3+)离子的特征发射为4f–5d跃迁。为了结合两者各自的发光特性,近年来对于混合价态Eu离子的研究成为热点。混合价态Eu离子掺杂荧光粉结合了Eu~(2+)和Eu3+离子各自的发光特点,具有颜色灵活可调的优良性质。本文主要从Eu~(2+)、Eu~(3+)各自性质出发,从不等价取代、晶场调控等三个方面综述了混合价态Eu(+2,+3)离子激活的单一基质发光材料近年来的研究进展。此外,对不同方法制备的混合价态Eu离子掺杂荧光粉的发光性能及发光机理也进行了归纳总结,为无机荧光材料的发展提供了新的思路。  相似文献   

7.
为了探究在Dy~(3+)掺杂Ba_3Y(PO_4)_3荧光粉中共掺Eu~(3+)离子对其发光性能的影响,我们采用传统高温固相法制备了一系列Dy~(3+)、Eu~(3+)单掺杂和共掺杂Ba_3Y(PO_4)_3荧光粉。通过X射线衍射(XRD)、荧光发射光谱和荧光衰减曲线对样品进行了表征。结果表明,所制备的荧光粉呈闪铋矿立方相。在近紫外光激发下,Ba_3Y(PO_4)_3∶Dy~(3+)发射光谱在487和578 nm处有两个窄带发射峰,呈冷白光发射;Ba_3Y(PO_4)_3∶Eu~(3+)发射光谱的窄带发射位于594和616 nm处,呈发橙红光。在Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)中,由于Eu~(3+)离子补偿Dy~(3+)冷白光发射所缺的红色组分,从而实现了色纯度高、色温适中的暖白光发射。进一步探索了Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)荧光粉发光机理。所制备的Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)单基质白光荧光粉在白光近紫外激发白光二极管(UVWLED)领域具有潜在应用价值。  相似文献   

8.
采用高温固相法制备了新型KCaY1-x(Mo04)3:Eux红色荧光粉.利用X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱技术对粉体进行了结构、表面形貌和发光性能表征.结果表明:该系列荧光粉均为四方晶系的白钨矿结构,能够被近紫外光(394 nm)和蓝光(465 nm)有效激发,产生Eu3的5 D0→7 F2特征跃迁红光发射(613 nm).对这种荧光粉作后处理,可改善其表面形貌,并提高其发光强度.该系列荧光粉在394,465 nm的吸收与目前广泛应用的近紫外和蓝光LED芯片的输出波长相匹配.因此这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料.  相似文献   

9.
采用高温固相法制备了可被近紫外光有效激发的NaCa1-x-yBayPO4:Eux3+(0.00≤x≤1.00)荧光粉.分别探讨了不同Eu3+掺杂量对NaCaPO4:Eu3+、NaBaPO4:Eu3+荧光粉发光强度的影响,以及改变Ca2+、Ba2+浓度对NaCa0.94-xBaxPO4:Eu3+0.06(x=0.1、0....  相似文献   

10.
以EDTA为矿化剂,采用水热法制备了GdVO4:Dy3+、GdVO4:Dy3+,Eu3+和GdVO4:Dy3+,Eu3+,Tm3+荧光粉,研究了所制备样品的相结构、形貌、荧光性质、Dy3+到Eu3+的能量传递及Dy3+4F9/26H15/2跃迁的衰减曲线。X射线衍射(XRD)确定了所合成的GdVO4:0.03Dy3+、GdVO4:0.03Dy3+,0.07Eu3+和GdVO4:0.03Dy3+,0.07Eu3+,0.07Tm3+样品均为四方晶系;扫描电镜(SEM)显示GdVO4:0.03Dy3+,0.07Eu3+和GdVO4:0.03Dy3+,0.07Eu3+,0.07Tm3+均为棒状结构,平均长度分别约为0.458和0.491 μm;通过研究GdVO4:Dy3+,Eu3+的发射光谱和衰减曲线,佐证了Dy3+到Eu3+的能量传递过程,并确定了其能量传递的机制为偶极-偶极相互作用。通过调节GdVO4:0.03Dy3+,xEu3+荧光粉中Eu3+的掺杂浓度实现了准白光输出(0.424,0.350);调节GdVO4:0.03Dy3+,0.07Eu3+,yTm3+荧光粉中Tm3+的掺杂浓度,也实现了白光输出(0.346,0.301)。  相似文献   

11.
通过固相反应法设计了Dy3+, Sm3+共掺杂双钙钛矿结构Ca2LaTaO6(CLTO)光色可调的白光发光二极管(LED)荧光粉. 通过Rietveld精修计算, 确定了Ca2LaTaO6的晶体结构参数和Dy3+, Sm3+离子的晶格占位, 并用密度泛函理论(DFT)计算了禁带宽度. 激发/发射光谱和荧光衰减行为证实了共掺杂体系中Dy3+到Sm3+的能量传递. Dy3+→Sm3+的能量传递机制为电偶极-电偶极相互作用, 离子间的临界距离为1.176 nm. 基于Dy3+→Sm3+的能量传递, 可通过调节Dy3+/Sm3+离子的掺杂浓度比, 使发光颜色从黄色转变为黄红色, 并实现白光发射. 利用该荧光粉与紫外芯片结合制作成白光发光二极管器件, 并确定了这些LED器件的发光效率、 CIE色度坐标、 相关色温(CCT)和显色指数(CRI)等. 结果表明, 这些荧光粉在紫外激发的白光LED中具有潜在的应用价值.  相似文献   

12.
基于蓝光芯片激发黄色荧光粉或近紫外芯片激发三基色荧光粉构建的白光发光二极管(WLED)在青光区域呈现明显的凹口,导致白光的色彩性能不够理想。为了弥补这一缺陷,实现全光谱白光,我们设计了Eu3+掺杂Ca2KZn2(VO4)3黄色荧光粉,其发射波长范围为400~750 nm。在387 nm激发下,在所制荧光粉中可同时获得来自VO43-基团和Eu3+的发射光。Eu3+在Ca2KZn2(VO4)3基质中的最佳掺杂浓度(物质的量分数)为0.05,且VO43-基团向Eu3+的能量传递效率达到64.9%。基于变温的发射光谱,揭示了所制荧光粉的热稳定性并发现VO43-基团和Eu3+的激活能分别为0.538和0.510 eV。此外,将所制黄色荧光粉与商用蓝色荧光粉和近紫外芯片进行封装整合,得到可发射暖白光的WLED器件,其色温和显色指数分别为3843 K和85.8。  相似文献   

13.
采用碳酸盐前躯体高温分解法合成了Sr1-xZnxY2S4:Er3+, Sr1-xZnxY2S4:Eu2+和Sr1-xZnxY2S4:Er3+, Eu2+红色荧光粉. XRD图谱表明, Zn2+掺杂量x<0.2 mol 时, 粉末样品为CaFe2O4型正交晶体. Zn2+离子在Sr1-xZnxY2S4:Er3+, Eu2+中的固溶量(x mol)对荧光粉的发射强度影响很大. 随着Zn2+离子掺杂浓度的增加, Sr1-xZnxY2S4:Er3+, Eu2+(SZYSEE)紫外区激发峰(200~413 nm)发生红移, 并与可见光激发带(413~600 nm)形成一个连续的宽带谱, 与紫外和GaN基LED芯片辐射都有良好的匹配性. 当Zn2+掺杂量为0.1 mol时, SZYSEE的发光强度达到最大, 其发光强度比未掺Zn2+的增强10.7倍. Sr0.9Zn0.1Y1.76S4:0.24Er3+, 0.006Eu2+是一种潜在的白光LED用红色荧光粉.  相似文献   

14.
采用高温固相法合成了Ca9La(PO4)7:Dy3+发光材料. 荧光粉的晶体结构和微观尺寸由X射线粉末衍射(XRD)仪和扫描电子显微镜(SEM)测定. 光致激发和发射光谱发光揭示了材料的光学特性. 实验结果显示: Ca9La(PO4)7:Dy3+能够有效吸收紫外-可见光(300-460 nm)而被激发, 呈现一系列的吸收峰. 样品在350 nm近紫外光激发下, 有较强的蓝光(481 nm)和黄光(573 nm)两个窄带发射, 混合成优质的白光发射, 该白光色坐标在国际照明委员会(CIE)色品图中分布在无色点D65 (0.313, 0329)周围. 随着掺杂Dy3+离子的摩尔分数的增加, 两种发射均发生浓度猝灭现象, Dy3+离子的最佳掺杂为0.05(摩尔分数), 电偶极-电偶极相互作用是主要的猝灭机理.  相似文献   

15.
以EDTA为矿化剂,采用水热法制备了Gd VO4∶Dy~(3+)、Gd VO4∶Dy~(3+),Eu~(3+)和Gd VO4∶Dy~(3+),Eu~(3+),Tm~(3+)荧光粉,研究了所制备样品的相结构、形貌、荧光性质、Dy~(3+)到Eu~(3+)的能量传递及Dy~(3+)的4F9/2→6H15/2跃迁的衰减曲线。X射线衍射(XRD)确定了所合成的Gd VO4∶0.03Dy~(3+)、Gd VO4∶0.03Dy~(3+),0.07Eu~(3+)和Gd VO4∶0.03Dy~(3+),0.07Eu~(3+),0.07Tm~(3+)样品均为四方晶系;扫描电镜(SEM)显示Gd VO4∶0.03Dy~(3+),0.07Eu~(3+)和Gd VO4∶0.03Dy~(3+),0.07Eu~(3+),0.07Tm~(3+)均为棒状结构,平均长度分别约为0.458和0.491μm;通过研究Gd VO4∶Dy~(3+),Eu~(3+)的发射光谱和衰减曲线,佐证了Dy~(3+)到Eu~(3+)的能量传递过程,并确定了其能量传递的机制为偶极-偶极相互作用。通过调节Gd VO4∶0.03Dy~(3+),x Eu~(3+)荧光粉中Eu~(3+)的掺杂浓度实现了准白光输出(0.424,0.350);调节Gd VO4∶0.03Dy~(3+),0.07Eu~(3+),y Tm~(3+)荧光粉中Tm~(3+)的掺杂浓度,也实现了白光输出(0.346,0.301)。  相似文献   

16.
采用高温固相法合成了Ga2S3∶Eu2+和SrGa2S4∶Eu2+系列荧光粉. 发现Ga2S3∶Eu2+的发射峰位于570 nm附近, SrGa2S4∶Eu2+的发射峰位于535 nm附近. 同时进一步探讨了SrGa2+xS4+y∶Eu2+体系中, 过量的Ga对发光的影响, 通过漫反射光谱和XRD谱确定过量的Ga是以Ga2S3的形式存在于SrGa2S4相中; 通过荧光光谱发现过量的Ga并不引起SrGa2S4∶Eu2+发射峰的位移, 而是增强其在400~520 nm处激发峰的强度, 从而增强Eu2+在535 nm处的发光强度.  相似文献   

17.
采用高温固相法合成了白光LED用红色荧光材料LixSr1-2xMoO4:Eux3+,对样品分别进行了X射线衍射(XRD)分析、扫描电镜测试(SEM)和荧光光谱的测定.测试结果表明,LixSr1-2xMoO4:Eux3+荧光粉可以被近紫外光(uv)(394 nm)和蓝光(464 nm)有效地激发,且与没有掺杂Li+的荧光粉SrMoO4:Eu3+相比,发光强度得到了明显的增强.同时也讨论Li+和Eu3+的掺杂浓度对发光强度的影响.  相似文献   

18.
采用高温固相法合成了一系列Eu2+掺杂的Mg Y2Al3Si2O11N(MYASON)青光荧光粉。详细探讨了不同制备方法对荧光粉的物相结构和发光强度的影响,利用X射线衍射精修和X射线光电子能谱实验证明Si4+-N3-离子对成功掺入石榴石晶格中。通过荧光光谱、寿命衰减曲线和变温光谱研究了发光性能,研究结果表明,用365 nm紫外光激发MYASON∶Eu2+荧光粉时,在青光区域呈现不对称宽带发射,峰值为490 nm,可以为紫外芯片激发的白光发光二极管有效提供青光成分。  相似文献   

19.
Sr5(PO4)3Cl:Eu2+蓝色荧光粉合成新方法的研究   总被引:1,自引:0,他引:1  
Sr5 (PO4)3Cl:Eu2+是一种重要的蓝色发射荧光材料,通常采用高温固相反应法来制备.本文利用Sr5(PO4)3(OH)与Sr5(PO4)3Cl结构相同的特点,采用沉淀法合成出羟基磷酸锶铕前体,经过氯化铵和助熔剂作用下的固相氯代反应合成出Sr5(PO4)3Cl:Eu2+荧光粉.考察了pH值与原料比例等对沉淀反应过程及产物的影响,并讨论了氯化铵作用下的氯代过程以及助熔剂对产物荧光粉形貌的作用机制.研究结果表明,本合成方法条件易控,且合成产物Sr5 (PO4)3Cl:Eu2+的物相纯度高,尺寸分布均匀,形貌规则,发光性能优良.  相似文献   

20.
采用高温固相法合成了一系列Eu2+掺杂的MgY2Al3Si2O11N(MYASON)青光荧光粉。详细探讨了不同制备方法对荧光粉的物相结构和发光强度的影响,利用X射线衍射精修和X射线光电子能谱实验证明Si4+-N3-离子对成功掺入石榴石晶格中。通过荧光光谱、寿命衰减曲线和变温光谱研究了发光性能,研究结果表明,用365 nm紫外光激发MYASON∶Eu2+荧光粉时,在青光区域呈现不对称宽带发射,峰值为490 nm,可以为紫外芯片激发的白光发光二极管有效提供青光成分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号