首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report focuses on measuring the individual electrophoretic mobilities of liposomes with different pH gradients across their membrane using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The results from the individual analysis of liposomes show that, using surface electrostatic theories and the electrokinetic theory as the first approximation, zeta potential contributes more significantly to the electrophoretic mobility of liposomes than liposomal size. For liposomes with an outer pH 7.4 (pH(o) 7.4) and a net negative outer surface charge, the most negative electrophoretic mobilities occur when the inner pH (pH(i)) is 6.8; at higher or lower pH(i), the electrophoretic mobilities are less negative. The theories mentioned above cannot explain these pH-induced electrophoretic mobility shifts. The capacity theory, predicting an induced electrical charge on the surface of liposomes, can only explain the results at pH(i) > 6.8. In this report, we hypothesize that there is a flip-flop process of phospholipids, which refers to the exchange of phospholipids between the outer and inner layers of the membrane. This flip-flop is caused by the pH gradient and membrane instability and results in the observed electrophoretic mobility changes when pH(i) is <6.8. Furthermore, it is found that the mobilities of acidic organelles are consistent with the predictions of liposome models we used here.  相似文献   

2.
A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.  相似文献   

3.
Maynard DK  Vigh G 《Electrophoresis》2001,22(15):3152-3162
The first single-isomer, 14-sulfated beta-cyclodextrin, the sodium salt of heptakis(2-O-methyl-3,6-di-O-sulfo)-beta-cyclodextrin (HMdiSu) has been used to separate 24 pharmaceutical weak base enantiomers in pH 2.5 background electrolytes using capillary electrophoresis. For the weakly binding bases, the cationic effective mobilities decreased, approached zero, and then increased again. For the strongly binding bases, the cationic effective mobilities decreased, became anionic at very low concentrations of HMdiSu, passed an anionic mobility maximum, then decreased again as the HMdiSu concentration was increased. Viscosity corrections according to Walden's rule did not eliminate these unexpected effective mobility extrema. The mobility extrema were rationalized by extending the charged resolving agent migration model (CHARM model) to include ionic strength effects.  相似文献   

4.
The main source of cohesion in cement paste is the nanoparticles of calcium silicate hydrate (C-S-H), which are formed upon the dissolution of the original tricalcium silicate (C(3)S). The interaction between highly charged C-S-H particles in the presence of divalent calcium counterions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. Traditional double-layer theory based on the Poisson-Boltzmann equation becomes qualitatively incorrect in these systems. Monte Carlo (MC) simulations in the framework of the primitive model of electrolyte solution is then an alternative, where ion-ion correlations are properly included. In addition to divalent calcium counterions, commercial Portland cement contains a variety of other ions (sodium, potassium, sulfate, etc.). The influence of high concentrations of these ionic additives as well as pH on the stability of the final concrete construction is investigated through MC simulations in a grand canonical ensemble. The results show that calcium ions have a strong physical affinity (in opposition to specific chemical adsorption) to the negatively charged silicate particles of interest (C-S-H, C(3)S). This gives concrete surprisingly robust properties, and the cement cohesion is unaffected by the addition of a large variety of additives provided that the calcium concentration and the C-S-H surface charge are high enough. This general phenomenon is also semiquantitatively reproduced from a simple analytical model. The simulations also predict that the affinity of divalent counterions for a highly and oppositely charged surface sometimes is high enough to cause a "charge reversal" of the apparent surface charge in agreement with electrophoretic measurements on both C(3)S and C-S-H particles.  相似文献   

5.
The mobilities of the monocharged permanent tertraphenylphosphonium cation and tetraphenylborate anion are determined by capillary zone electrophoresis in different organic solvents as a function of the ionic strength, I, of the background electrolyte. The nonaqueous solvents are propylene carbonate (PC), N,N-dimethylformamide (DMF), N,N,-dimethylacetamide (DMA), acetonitrile (MeCN) and methanol (MeOH). The ionic strength is between 5 and 50 mmol/L. The mobility as a function of I is in good agreement with the theory of Debye, Hückel and Onsager (DHO), extended by the ion size parameter as introduced by Falkenhagen and Pitts. The values of the limiting DHO slopes of the mobility vs. I curves (the slopes express the influence of the solvent on the reduction of the mobility with increase of I) decrease in the order MeCN > MeOH > DMF > DMA > PC. Absolute mobilities (obtained by extrapolation to I = 0) of a particular ion differ by a factor of about 7 between the solvents. However, constancy within 10% is observed for their Walden products (the absolute mobility multiplied with the solvent's macroviscosity). The role of dielectric friction on the mobility of the present monocharged, large analyte ions is discussed according to the theory of Hubbard and Onsager. Based on the radii of the ions, the static permittivity of the solvent and its permittivity at infinite frequency, and the relaxation time of polarization, an equal contribution of dielectric and hydrodynamic friction is predicted in MeOH as solvent. Experimental data are in contrast to this prediction, indicating the overestimation of dielectric friction, and the dominance of hydrodynamic friction on the migration of the analyte ions in all solvents under consideration.  相似文献   

6.
For a highly charged particle in an electrolyte solution, counterions are condensed very near the particle surface. The electrochemical potential of counterions accumulated near the particle surface is thus not affected by the applied electric field, so that the condensed counterions do not contribute to the particle electrophoretic mobility. In the present paper we derive an expression for the electrophoretic mobility mu(infinity) of a highly charged spherical particle of radius a and zeta potential zeta in the limit of very high zeta in a solution of general electrolytes with large ka (where k is the Debye-Hückel parameter) on the basis of our previous theory for the case of symmetrical electrolytes (H. Ohshima, J. Colloid Interface Sci. 263 (2003) 337). It is shown that zeta can formally be expressed as the sum of two components: the co-ion component, zetaco-ion, and the counterion component, zetacounterion (where zeta = zetaco-ion + zetacounterion) and that the limiting electrophoretic mobility mu(infinity) is given by mu(infinity) = epsilonr epsilon0 zetaco-ion(infinity)/eta + 0(1/ka), where zetaco-ion(infinity) is the high zeta-limiting form of zetaco-ion, epsilonr and eta are, respectively, the relative permittivity and viscosity of the solution, and epsilon0 is the permittivity of a vacuum. That is, the particle behaves as if its zeta potential were zetaco-ion(infinity), independent of zeta. For the case of a positively charged particle in an aqueous electrolyte solution at 25 degrees C, the value of zetaco-ion(infinity) is 35.6 mV for 1-1 electrolytes, 46.0 mV for 2-1 electrolytes, and 12.2 mV for 1-2 electrolytes. It is also found that the magnitude of mu(infinity) increases as the valence of co-ions increases, whereas the magnitude of mu(infinity) decreases as the valence of counterions increases.  相似文献   

7.
We consider a density-functional theory to describe nonuniform fluids composed of chain molecules, containing a charged segment each, and spherical counterions. The chain molecules are modeled as freely jointed chains of hard spheres, the counterions are oppositely charged spheres of the same diameter as all segments of chain molecules. The theory is applied to study the structure of adsorbed layers, the excess adsorption isotherms, the capacitance of the double layer, and the potential of the zero charge. We show that all electric properties are strongly dependent on the length of the chain molecules. Moreover, these properties are also dependent on the position of the charged segment in the chain.  相似文献   

8.
Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.  相似文献   

9.
Carbon nanoparticles obtained from the flame of an oil lamp were examined by means of capillary electrophoresis. The influence of buffer composition on the separation of the mixture of negatively charged carbon nanoparticles was studied by varying buffer selection, pH, and concentration. The electrophoretic pattern was affected by both the co- and counter-ion in the buffer solution, influencing selectivity and peak shape. The capillary electrophoretic separations at different pH revealed species with large electrophoretic mobilities under a wide range of pH. The mobility of selected species in the mixture of nanoparticles showed a strong dependence upon the solution ionic strength. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that under the experimental conditions utilized, the species are small, highly charged particles with appreciable zeta potentials, even at low pH.  相似文献   

10.
A bead model methodology developed in our lab (Xin et al. J. Phys. Chem. B 2006, 110, 1038) and applicable to modeling the free solution electrophoretic mobility of peptides and proteins is generalized in two significant ways. First, an approximate account is taken of the relaxation effect, which makes the methodology applicable to more highly charged peptides and proteins than was previously possible. Second, a more accurate account is taken of the finite size of the beads making up the model structure. This improvement makes the method applicable at higher salt concentrations and/or to models consisting of larger sized subunits. The relaxation effect is accounted for by correcting "unrelaxed" mobilities on the basis of model size and average electrostatic surface, or zeta potential. Correction factors are estimated using those of spheres with the same hydrodynamic radius and zeta potential as the model structure. The correction factors of spheres are readily determined. The more general methodology is first applied to two sets of peptides (74 different peptides total) varying in size from 2 to 42 amino acids. The sets also cover a wide range of net charges. It is shown that accounting for finite bead size results in a small change in model mobilities under the conditions of the experiments (35 mM monovalent salt). The correction for ion relaxation, however, can be significant for highly charged peptides and improves agreement between model and experimental mobilities. Our correction procedure is also tested by examining the electrophoretic mobility of a particular protein "charge ladder" (Carbeck et al. J. Am. Chem. Soc. 1999, 121, 10,671), where the protein charge is varied over a wide range yet the conformation remains essentially constant. In summary, the effects of ion relaxation can be significant if the absolute electrophoretic mobility of a peptide exceeds approximately 0.20 cm2/(kV s).  相似文献   

11.
We use the framework of counterion condensation theory, in which deviations from linear electrostatics are ascribed to charge renormalization caused by collapse of counterions from the ion atmosphere, to explore the possibility of condensation on charged spheres, cylinders, and planes immersed in dilute solutions of simple salt. In the limit of zero concentration of salt, we obtain Zimm-Le Bret behavior: a sphere condenses none of its counterions regardless of surface charge density, a cylinder with charge density above a threshold value condenses a fraction of its counterions, and a plane of any charge density condenses all of its counterions. The response in dilute but nonzero salt concentrations is different. Spheres, cylinders, and planes all exhibit critical surface charge densities separating a regime of counterion condensation from states with no condensed counterions. The critical charge densities depend on salt concentration, except for the case of a thin cylinder, which exhibits the invariant criticality familiar from polyelectrolyte theory.  相似文献   

12.
Chemical and structural intricacies of bacterial cells complicate the quantitative evaluation of the physicochemical properties pertaining to the cell surface. The presence of various types of cell surface appendages has a large impact on those properties and therefore on various interfacial phenomena, such as aggregation and adhesion. In this paper, an advanced analysis of the electrophoretic mobilities of fibrillated and nonfibrillated strains (Streptococcus salivarius HB and Streptococcus salivarius HB-C12, respectively) is performed over a wide range of pH and ionic strength conditions on the basis of a recent electrokinetic theory for soft particles. The latter extends the approximate formalism originally developed by Ohshima by solving rigorously the fundamental electrokinetic equations without restrictions on the bacterial size, charge, and double layer thickness. It further allows (i) a straightforward implementation of the dissociation characteristics, as evaluated from titration experiments, of the ionogenic charged groups distributed throughout the bacterial cell wall and/or the surrounding exopolymer layer and (ii) the inclusion of possible specific interactions between the charged groups and ions from the background electrolyte other than charge-determining ions. The theory also enables an estimation of possible swelling/shrinking processes operating on the outer polymeric layer of the bacterium. Application of the electrokinetic model to HB and HB-C12 clearly shows a significant discrepancy between the amount of surface charges probed by electrophoresis and by protolytic titration. This is ascribed to the specific adsorption of cations onto pristine charged sites in the cell wall. Physicochemical parameters pertaining to the hydrodynamics (softness degree) and electrostatics of the bacterial cell wall (HB-C12) and soft polymeric layer (HB) are quantitatively derived.  相似文献   

13.
Theoretical study of catalytic effects in micellar solutions   总被引:1,自引:0,他引:1  
The catalytic effect of charged micelles as manifested through the increased collision frequency between the counterions of an electrolyte in the presence of such micelles is explored by the Monte Carlo simulation technique and various theoretical approaches. The micelles and ions are pictured as charged hard spheres embedded in a dielectric continuum with the properties of water at 298 K with the charge on micelles varying from zero to z(m) = 50 negative elementary charges. Analytical theories such as (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory, and (iii) the hypernetted-chain integral equation are applied and tested against the Monte Carlo data for micellar ions (m) with up to 50 negative charges in aqueous solution with monovalent counterions (c; z(c) = +1) and co-ions (co; z(co) = -1). The results for the counterion-counterion pair correlation function at contact, g(cc)(sigma(cc)), are calculated in a micellar concentration range from c(m) = 5 x 10(-)(6) to 0.1 mol/dm(3) with an added +1:-1 electrolyte concentration of 0.005 mol/dm(3) (for most cases), and for various model parameters. Our computations indicate that even a small concentration of a highly charged polyelectrolyte added to a +1:-1 electrolyte solution strongly increases the probability of finding two counterions in contact. This result is in agreement with experimental data. For low charge on the micelles (z(m) below -8), all the theories are in qualitative agreement with the new computer simulations. For highly charged micelles, the theories either fail to converge (the hypernetted-chain theory) or, alternatively, yield poor agreement with computer data (the symmetric Poisson-Boltzmann and modified Poisson-Boltzmann theories). The nonlinear Poisson-Boltzmann cell model results yield reasonably good agreement with computer simulations for this system.  相似文献   

14.
Using computer simulations, the electrophoretic motion of a positively charged colloid (macroion) in an electrolyte solution is studied in the framework of the primitive model. In this model, the electrolyte is considered as a system of negatively and positively charged microions (counterions and coions, respectively) that are immersed into a structureless medium. Hydrodynamic interactions are fully taken into account by applying a hybrid simulation scheme, where the charged ions (i.e., macroion and electrolyte), propagated via molecular dynamics, are coupled to a lattice Boltzmann (LB) fluid. In a recent electrophoretic experiment by Martin-Molina et al. [J. Phys. Chem. B 106, 6881 (2002)], it was shown that, for multivalent salt ions, the mobility mu initially increases with charge density sigma, reaches a maximum, and then decreases with further increase of sigma. The aim of the present work is to elucidate the behavior of mu at high values of sigma. Even for the case of monovalent microions, a decrease of mu with sigma is found. A dynamic Stern layer is defined that includes all the counterions that move with the macroion while subjected to an external electrical field. The number of counterions in the Stern layer, q(0), is a crucial parameter for the behavior of mu at high values of sigma. In this case, the mobility mu depends primarily on the ratio q(0)/Q (with Q the valency of the macroion). The previous contention that the increase in the distortion of the electric double layer (EDL) with increasing sigma leads to the lowering of mu does not hold for high sigma. In fact, it is shown that the deformation of the EDL decreases with the increase of sigma. The role of hydrodynamic interactions is inferred from direct comparisons to Langevin simulations where the coupling to the LB fluid is switched off. Moreover, systems with divalent counterions are considered. In this case, at high values of sigma the phenomenon of charge inversion is found.  相似文献   

15.
Beckers J  Bocek P 《Electrophoresis》1999,20(3):518-524
Non-steady-state electrophoretic processes can be estimated by a repeated application of a steady-state model based on the electroneutrality equation, the modified version of Ohm's law, and the mass balances of the co- and counterions. With such a mathematical model, all parameters in sample zones in capillary zone electrophoresis (CZE) can be calculated. The relationships between the calculated parameters for sample zones in CZE, such as the pH, concentrations of co- and counterions, and the ratio E1m1/E2m2 versus the mobilities of both anionic and cationic analytes can be visualized in a SystChart, a set of eight panels, for a given background electrolyte (BGE). All properties of a zone, such as the fronting/tailing character and the question of peaks/dips can be read from such a SystChart. Applying n coions, n-1 discontinuities are present in such a SystChart, indicating the presence of system peaks applying that BGE. For BGEs with one coion, no system peaks (discontinuities) exist at moderate pH values. SystCharts calculated for BGEs with a low pH do show discontinuities, however, which indicates that system peaks are present in electropherograms applying BGEs at low pH. Experimentally, it is shown that system peaks are indeed present in electropherograms applying BGEs with one coion at low pH and the mobilities of the system peaks generally increase with decreasing pH. Hydrogen ions seem to act as a second coionic species. Of course, these system peaks are only visible in the UV signal if the BGE has UV-absorbing properties.  相似文献   

16.
The structural and thermodynamic properties of a model solution containing flexible charged oligomers and an equivalent number of counterions were studied by means of the canonical Monte Carlo simulation and integral equation theory. The oligomers were represented as freely jointed chains of charged hard spheres. In accordance with the primitive model of electrolyte solutions, the counterions were modeled as charged hard spheres and the solvent as a dielectric continuum. Simulations were performed for a set of model parameters, independently varying the chain length and concentration of the oligomers. Structural properties in the form of pair distribution functions were calculated as functions of model parameters. In addition, thermodynamic properties such as the excess energy of solution and the excess chemical potential of counterions were obtained. These properties were correlated with the conformational averages of oligomers as reflected in the end-to-end distances and radii of gyration obtained from the simulations. The relation with the experimental data for heats of dilution and for the activity coefficient is discussed. Finally, theories based on Wertheim's integral equation approach (product reactant Ornstein-Zernike approach) [J. Stat. Phys. 42, 477 (1986)] in the so-called polymer mean spherical and polymer hypernetted chain approximations were tested against the new and existing computer simulations. For the values of parameters examined in this study, the integral equation theory yields semiquantitative agreement with computer simulations.  相似文献   

17.
18.
The free solution mobilities of the adenosine nucleotides 5'-adenosine triphosphate (ATP), 5'-adenosine diphosphate (ADP), 5'-adenosine monophosphate (AMP), and 3'-5'-cyclic AMP (cAMP) have been measured in diethylmalonate buffers containing a wide variety of monovalent cations. The mobilities of all nucleotides increase gradually with the increase in intrinsic conductivity of the cation in the BGE. However, at a given conductivity, the mobilities observed for ATP, ADP, and AMP in BGEs containing alkali metal ions and other cations are lower than these observed in BGEs containing tetraalkylammonium ions. Since the mobility of cAMP is independent of the cation in the BGE, the results suggest that the relatively low mobilities observed for ATP, ADP, and AMP in BGEs containing cations other than a tetraalkylammonium ion are due to cation binding, reducing the effective net charge of the nucleotide and thereby reducing the observed mobility. To measure the binding quantitatively, the mobilities of the nucleotides were measured as a function of ionic strength. The mobilities of ATP, ADP, and AMP decrease nonlinearly with the square root of ionic strength (I(1/2)) in BGEs containing an alkali metal ion or Tris(+). By contrast, the mobilities decrease linearly with I(1/2) in BGEs containing a nonbinding quaternary ammonium ion, as expected from Debye-Hückel-Onsager (DHO) theory. The mobility of cAMP, a nonbinding analyte, decreases linearly with I(1/2), regardless of the cation in the BGE. Hence, a nonlinear decrease of the mobility of an analyte with I(1/2) appears to be a hallmark of counterion binding. The curved mobility profiles observed for ATP, ADP, and AMP in BGEs containing an alkali metal ion or Tris(+) were analyzed by nonlinear curve fitting, using difference mobility profiles to correct for the effect of the physical properties of BGE on the observed mobilities. The calculated apparent dissociation constants range from 22 to 344 mM, depending on the particular cation-nucleotide pair. Similar values have been obtained by other investigators, using different methods. Interestingly, Tris(+) and Li(+) bind to the adenosine nucleotides with approximately equal affinities, suggesting that positively charged Tris(+) buffer ions can compete with alkali metal ions in Tris-buffered solutions.  相似文献   

19.
The effect of ionic strength on the rheological behavior of model pH-responsive nanocolloidal systems consisting of methacrylic acid-ethyl acrylate (MAA-EA) cross-linked with diallyl phthalate (DAP) was examined. Neutralization of acid groups increases the osmotic pressure exerted by counterions trapped in the polymeric network against ions in bulk solution, which is responsible for the swelling and increase in viscosity. Swelling decreases with increasing salt concentration as a result of reduced osmotic pressure inside the microgels, which is attributed to the charge shielding effect of counterions (salt) on the negatively charged carboxylate groups. Electromotive measurements using ion-selective electrodes confirmed that not all the counterions, that is, K+, remain mobile, but a fraction of these ions can penetrate the porous microgel particles to shield the negatively charged carboxylate groups. A consequence of this is that some of the Na+ counterions inside the particles are expelled, thus regaining their translational entropy, and become mobile sodium ions in the bulk solution. We successfully developed a new scaling law that relates the swelling ratio, Q, of microgels as a function of neutralization degree, alpha, cross-linked density, Nx, molar fraction of acidic units, y, and concentration of mobile counterions, CK+ and CNa+, represented as (Nx/c0)(CK+ + CNa+Q + Q2/3 proportional, variant yNxalpha. The new scaling law no longer assumes that all the counterions are trapped inside the microgels. The proportionality reduces to the form Q proportional, variant (yalphaNx)3/2 in the absence of salt, that is, CK+ + CNa+ approximately 0. By combining the results from light scattering and rheological measurements, we are able to correlate the microstructural evolution of the colloidal systems with their bulk rheological behavior.  相似文献   

20.
Roy KI  Lucy CA 《Electrophoresis》2003,24(3):370-379
The mobilities of a series of aromatic ammonium ions, ranging in charge from +1 to + 3, were investigated by capillary electrophoresis using buffers consisting of 0-75% v/v methanol. This is an extension of our previous studies involving anion mobility in methanol-water media [1]. Absolute mobilities were determined by extrapolation of the effective mobilities to zero ionic strength according to the Pitts' equation. For all of the buffer compositions studied, the ionic strength effect increased with increasing cation charge, and varied as a function of solvent 1/eta epsilon (1/2) as predicted by the electrophoretic term within the Pitts' equation. In the presence of methanol, the ionic strength effects became more dramatic. The absolute mobilities of the cations were altered by the addition of methanol to the electrophoretic media. For example, at 75% MeOH, a migration order reversal was observed between the + 2 and + 3 ammonium ions. These solvent-induced selectivity changes are attributed to dielectric friction. As predicted by the Hubbard-Onsager dielectric friction model, dielectric friction increased with increasing methanol content and with increasing analyte charge. Further, the changes in cation mobility correlated to the changes in solvent relaxation time (tau), epsilon and eta. Although not predicted by the Hubbard-Onsager theory, the + 3 ammonium ion experienced more dielectric friction than the - 3 sulfonate and - 3 carboxylate investigated previously [1]. This apparent failure of the Hubbard-Onsager model results from its continuum nature, whereby ion-solvent interactions are not taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号