首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite poly-3,4-ethylenedioxythiophene (PEDOT)/palladium (Pd) films were obtained by chemical deposition of dispersed palladium nanoparticles into PEDOT conducting polymer matrix. The amounts of palladium particles incorporated into PEDOT films were estimated by electrochemical quartz crystal microbalance measurements. It was shown that palladium loading depends on the time a PEDOT film is exposed in the solution, containing Pd(II)-ions, on the concentration of Pd(II) ions and the film thickness. X-ray photoelectron spectroscopy data have confirmed the presence of metallic palladium in the polymer. The morphology of pristine and composite films as well as the size of Pd nanoparticles and their distribution were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From SEM images, it was found that Pd particles decorated PEDOT globular structures as quasi-spherical particles, and their mean size was dependent on synthesis conditions. The nanoparticles were non-uniformly dispersed on the polymer surface. The comparison of TEM images of composite PEDOT/Pd films obtained for different times of metal loading was made. The remarkable effect of loading time on the size of particles has been established: the mean size of dominating palladium particles was close to 6–10 nm for 30 s of metal deposition, and it was getting larger with the increase of deposition time (close to 15–30 nm for 120 s). It is most likely that with prolongation of synthesis time, the deposition of palladium predominantly proceeds on the already deposited palladium clusters, resulting in the extension growth of their size. Catalytic properties of PEDOT/Pd composite films were studied in respect to hydrazine oxidation by cyclic voltammetry and voltammetry on rotating disk electrode. The obtained data allow to conclude that the process of hydrazine oxidation on PEDOT/Pd composites takes place predominantly on palladium particles, located on the surface or in the near-surface layers of the polymer. The diffusion nature of the limiting current of hydrazine oxidation on composite PEDOT/Pd film in phosphate buffer solution рН = 6.86 was confirmed, and hydrazine diffusion coefficient was calculated. The increase of the limiting currents of hydrazine oxidation with the increase of Pd deposition time was observed, resulting from the increase of the active surface area of palladium particles, acting as microelectrodes. The electroanalytical applications of these nanocomposite materials for the determination of hydrazine were demonstrated.  相似文献   

2.
We report on the oxidative stability of thiol-passivated Au monolayer-protected clusters (MPCs) made via a modified Brust-Schiffrin method. A sequential oxidation of the anchored thiol groups to disulfide and sulfonate groups and the oxidation of Au atoms to Au3+ species is observed upon exposure of Au MPCs to air in the presence of halide anions. In addition, the average nanoparticle size grows via aggregation of the MPCs, leading eventually to partial oxidation of the Au MPCs and precipitation of the remaining nanoparticles from solution or to complete oxidation of the gold atoms at high halide concentrations. These results show that Au MPCs are prone to oxidation in air in the presence of halide anions, and therefore, particles made using phase transfer reagents such as tetraoctylammonium bromide must be thoroughly removed to avoid particle size growth, oxidation, and precipitation of the Au MPCs. In addition, for biological applications involving Au MPCs, care must be taken to ensure that oxidation of MPCs in air is not problematic when working in media containing halide anions.  相似文献   

3.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

4.
The synthesis of surface-confined, nanometer-sized dendrimers and Au nanoparticles was performed starting from single Pd(II) pincer adsorbate molecules (10) embedded as isolated species into 11-mercapto-1-undecanol and decanethiol self-assembled monolayers (SAMs) on gold. The coordination of monolayer-protected Au nanoclusters (MPCs) bearing phosphine moieties at the periphery (13), or dendritic wedges (8) having a phosphine group at the focal point, to SAMs containing individual Pd(II) pincer molecules was monitored by tapping mode atomic force microscopy (TM AFM). The individual Pd(II) pincer molecules embedded in the decanethiol SAM were visualized by their coordination to phosphine MPCs 13; isolated objects with a height of 3.5 +/- 0.7 nm were observed by TM AFM. Reaction of these embedded Pd(II) pincer molecules with the dendritic wedge 8 yielded individual molecules with a height of 4.3 +/- 0.2 nm.  相似文献   

5.
We describe the formation of stable dithiol-bifunctionalized Ru(II)-terpyridine monolayer onto gold electrode. The coverage-dependent behavior onto gold electrode has been studied by electrochemical technique. The stability, surface charge coverage, and electron-transfer kinetics were assessed by cyclic voltammetry. Functionalized monolayer-protected Au clusters (MPCs) were also prepared. The spectroscopic characterization data of MPCs using UV-Vis and TEM techniques are discussed. TEM images showed that functionalized spherical nanoclusters of 4.7 ± 0.3 and 4.3 ± 0.2 nm were produced. The particle sizes are uniform with a narrow size distribution. The morphology of Au(1 1 1) metal surface modified with MPCs was imaged using atomic force microscopy (AFM). The nanoparticle layer exhibits a distinct surface morphology, irregularly shaped domains with dimensions from 20 to 60 nm and root mean square heights of 2.401 nm.  相似文献   

6.
采用原位液体池透射电镜技术,在扫描透射电子显微镜(STEM)中,实时观察溶液中金属钯(Pd)在金(Au)纳米颗粒及团簇周围的异质沉积过程。通过对该动态过程的定量分析,结合高分辨透射电子显微镜(HRTEM)对样品进行形貌与结构表征,研究异质沉积的机理。结果表明,电子束辐照下Au-Pd异质结构纳米颗粒的形成存在两种主要机制:第一种机制中,Pd在Au纳米颗粒表面的生长是以岛状沉积开始,随着时间推移,出现Pd岛的结构弛豫和沿着Au颗粒表面的迁移扩展。伴随Pd的不断沉积和弛豫,Au-Pd复合颗粒的外接圆直径表现为震荡生长,而Au表面的Pd覆盖率显示出随时间单调增加的趋势。第二种机制中,由于Pd单体在Au纳米颗粒上的沉积位点有限,使部分被还原的Pd在Au颗粒以外区域进行同质形核与生长形成Pd团簇,之后再与Au颗粒上的Pd岛合并。进一步的结果分析显示,Au颗粒外围的Pd沉积体为多晶结构,由随机取向的Pd纳米晶粒构成。  相似文献   

7.
王伟  李娟  白茹  韩珍  冯雪薇  孙越 《应用化学》2020,37(5):595-603
在金电极表面,用无金属可见光诱导原子转移自由基聚合(MVL ATRP)的方法制备聚丙烯酰胺@氧化石墨烯/纳米钯复合物修饰电极(Au/PAM@GO/Pd)。采用电化学循环伏安法(CV)、交流阻抗法(EIS)、扫描电子显微镜(SEM)、能量色散X射线光谱法(EDS)对Au/PAM@GO/Pd电极进行表征,结果表明在金电极表面成功制备了复合物。利用Au/PAM@GO/Pd电极作为电化学传感器,该传感器能成功地检测溶液中的乙醇。在最佳条件下,利用差分脉冲伏安法(DPV)该传感器检测乙醇的线性范围为1.0×10-8~1.0 mol/L,检出限(S/N=3)为1.3×10-9 mol/L,线性相关系数为0.996。  相似文献   

8.
利用壳层厚度调节核壳Au@Pd纳米粒子的SERS活性   总被引:4,自引:0,他引:4  
设计合成了一种尺寸可控, 且外壳上无“针孔”的核壳钯包金(Au@Pd)纳米粒子, 通过改变核的尺寸和外壳的厚度来调控其光学性质, 并用TEM、HRTEM、UV-Vis和SERS等手段对其进行了表征. 通过研究Au@Pd纳米粒子的SERS活性随Pd壳层厚度变化的规律, 发现薄壳Au@Pd纳米粒子远远优于Pd金属本身的SERS活性, 其原因主要是内层金核电磁场增强的长程效应.  相似文献   

9.
Mahshid S  Li C  Mahshid SS  Askari M  Dolati A  Yang L  Luo S  Cai Q 《The Analyst》2011,136(11):2322-2329
A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.  相似文献   

10.
光化学合成Au核@Pd壳复合纳米粒子及其表征   总被引:1,自引:0,他引:1  
在PEG-丙酮溶液体系中, 采用紫外光辐射还原Au(Ⅲ), Pd(Ⅱ)离子混合物和以Au晶种为核、紫外光辐射还原Pd(Ⅱ)使其沉积在Au晶种表面上这两种方法, 合成了Au核@Pd壳复合纳米粒子. 通过改变Au(Ⅲ)离子或Au晶种对Pd(Ⅱ)离子的摩尔比调节复合粒子的尺寸和Pd壳厚度, 分别获得了直径范围为5.6~4.6 nm和4.6~6.2 nm的复合粒子. 利用UV-Vis吸收光谱、TEM、HR-TEM和XPS等表征手段, 证明了合成的纳米粒子为核-壳复合结构. 研究了Au@Pd纳米粒子的直径随溶液中Au(Ⅲ)/Pd(Ⅱ)摩尔比的改变而变化的规律; 对Au核向Pd壳的供电子作用以及复合粒子的光化学形成机理进行了讨论.  相似文献   

11.
Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.  相似文献   

12.
Pd nanoparticles (NPs) were directly deposited on indium-tin oxide (ITO) electrodes by cyclic voltammetry (CV) in a bulk Pd2+ solution and the size of the Pd (NPs) was evaluated by SEM. The electrochemical deposition conditions of the Pd NPs were varied according to a scan rate. As the scan rate was decreased, the size of the Pd NPs increased, but the formic acid catalytic property was weakened. With regard to cycle number, with increased cycling, the size of the Pd NPs increased but the formic acid catalytic property decreased. As the conditions of electrochemical deposition were varied, the particle size and catalytic activity for formic acid were also changed.  相似文献   

13.
钛酸四丁酯前驱体水热合成制备纳米TiO2颗粒,在TiO2和Vulcan XC-72活性炭复合载体上液相还原负载Pd纳米颗粒,制得Pd/TiO2/C复合催化剂. 通过透射电镜(TEM)和X射线衍射(XRD)测试表明其具有面心立方结构,Pd金属粒子(粒径约3 ~ 4 nm)均匀分散在锐钛矿型的纳米TiO2和活性炭的复合载体上. 循环伏安和计时电流曲线测试表明,与相同Pd载量的Pd/C相比,20% Pd载量的Pd/TiO2/C颗粒在常温常压下对乙醇的电催化氧化有很高活性和稳定性. 这主要归功于纳米TiO2改变了Pd表面的电子特性,且增大了其比表面积.  相似文献   

14.
The electrochemical and electrocatalytic behaviour of Pt/Pd nanoparticles prepared in water-in-oil microemulsion was reported. The catalytic activity of the nanoparticles was studied by using the reactions of dissociative adsorption of methanol and formic acid. The use of these surface probe reactions allowed the detection of palladium at the surface of the nanoparticles. The electrochemical stability of the particles was also investigated by voltammetry and electrochemical quartz crystal microbalance (EQCM). We shown that EQCM technique may be quantitatively used to correlate mass and area modifications when the electrochemical conditions produce corrosion of the elements of the alloy.  相似文献   

15.
Assembled films of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), are investigated as adsorption platforms in protein monolayer electrochemistry (PME), a strategy for studying the electron transfer (ET) of redox proteins. Modified electrodes featuring MPC films assembled with various linking methods, including both electrostatic and covalent mechanisms, are employed to immobilize cytochrome c (cyt c) for electrochemical analysis. The background signal (non-Faradaic current) of these systems is directly related to the structure and composition of the MPC films, including nanoparticle core size, protecting ligand properties, as well as the linking mechanism utilized during assembly. Dithiol-linked films of Au225(C6)75 are identified as optimal films for PME by sufficiently discriminating against detrimental background current and exhibiting interfacial properties that are readily engineered for cyt c adsorption and electroactivity (Faradaic current). Surface concentrations and denaturation rates of adsorbed cyt c are dictated by specific manipulation of the individual MPCs composing the outer layer of the film. The use of specially designed, hydrophilic MPCs as a terminal film layer results in near-ideal cyt c voltammetry, attributed to a high degree of molecular level control of the necessary interfacial interactions and flexibility needed to create a uniform and effective binding of protein across large areas of a substrate. The electrochemical properties of cyt c at MPC films, including ET rate constants that are unaffected by the large ET distance introduced by MPC assemblies, are compared to traditional strategies employing self-assembled monolayers to immobilize cyt c. The incorporation of nanoparticles as protein adsorption platforms has implications for biosensor engineering as well as fundamental biological ET studies.  相似文献   

16.
以聚乙烯亚胺(PEI)功能化的石墨烯(PEI-GNs)为载体, 利用电化学还原法制备了Pd/PEI-GNs复合物. 采用红外光谱仪、 X射线光电子能谱仪、 X射线粉末衍射仪和扫描电子显微镜等对复合物的组成、 结构和形态进行了表征. 结果表明, Pd/PEI-GNs复合物中Pd颗粒均匀分散在PEI-GNs基底上. 采用循环伏安法、 交流阻抗法和计时电流法等电化学方法研究了Pd/PEI-GNs复合物的电化学性能. 结果表明, 制备的复合物催化剂对对硝基苯酚还原具有较好的催化活性和稳定性, 这主要是由于Pd纳米颗粒在PEI-GNs载体上均匀分散以及PEI-GNs优异的电子传递能力.  相似文献   

17.
New poly(vinylidene fluoride) based multi-functional (electroconductive, bioactive and catalytic) nano-biowebs were prepared through gamma radiation induced formation of silica and gold nanoparticles (Au NPs) within electrospun (poly vinylidene fluoride) nanofiberous membranes. The multifunctional membrane is designated as PVdF@silica/Au ESNFM. The morphology of PVdF@silica/Au ESNFM was examined by field emission scanning electron microscopy. The presence of Au particles was confirmed by energy dispersive x-ray analysis. The crystal structure of Au particles and the formation of silica were confirmed by X-ray diffraction analysis. The multi-functionalities (electroconductive, bioactive and catalytic) of the nano-webs were evaluated by cyclic voltammetry. Cytochrome c was immobilized to generate nano-bioweb (PVdF@silica/Au/cyt c ESNFM), which exhibited electrochemical responses to nitrite ions.  相似文献   

18.
Studies of the electrochemical optimization of ZnSe thin film deposition on polycrystalline Au substrates using electrochemical atomic layer epitaxy are reported. Electrochemical aspects were characterized by means of cyclic voltammetry, differential pulse voltammetry, and coulometry. To study the growth mechanism of the underpotential deposition in the formation of ZnSe, the effects of Zn and Se deposition potentials and a Se-stripping potential were adjusted to optimize the deposition program. The deposit, grown using the optimized program, was proved to be a single-phase ZnSe compound with a strong (220)-preferred orientation by X-ray diffraction analysis, and scanning electronic microscopy observation shows the deposit consisted of nanoscale particles with an average size about 100 nm. The right 1:1 stoichiometric ratio of Zn to Se according to the coulometry suggests that ZnSe is formed.  相似文献   

19.
A combination of photocathodic stripping and precipitation was used to prepare CdTe nanoparticles (size range: 30–60 nm) that were immobilized on a polycrystalline Au substrate. Thus visible light irradiation of a Te modified Au surface generated Te2− species in situ followed by interfacial reaction with added Cd2+ ions in 0.1 M Na2SO4 electrolyte. The resultant CdTe compound semiconductor deposited as nanosized particles uniformly dispersed on the Au substrate surface. This approach to CdTe nanoparticle deposition was monitored by a combination of electrochemical methods (voltammetry, chronoamperometry) and quartz crystal microgravimetry in the “dark” and under illumination. The synthesized CdTe nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray analyses and laser Raman spectroscopy.  相似文献   

20.
A simple electrochemical approach is developed to prepare reduced graphene oxide (RGO)-wrapped carbon fiber (CF) as a novel support for Pt–Au nanocatalysts. The obtained composite electrodes have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA), and electrochemical methods. SEM images reveal that the Pt–Au nanoparticles deposited on RGO-wrapped CF (RGO/CF) electrode display smaller particle size and more uniform dispersion than those on the bare CF electrode. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, Tafel plots, and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the introduced RGO on CF electrode surface is beneficial to the dispersion of Pt–Au nanoparticles, as a consequence, to the enhancement of the electrocatalytic activity and the antipoisoning ability of Pt–Au towards formic acid electrooxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号