共查询到20条相似文献,搜索用时 15 毫秒
1.
Marilyn Ehrenshaft Marcelo G. Bonini Li Feng Colin F. Chignell Ronald P. Mason 《Photochemistry and photobiology》2010,86(4):752-756
Proteins are the dominant cellular target for oxidative reactions because they comprise the majority of macromolecules. Posttranslational oxidative protein modifications include fragmentation, aggregation and alteration of specific amino acid residues. The amino acids and amino acid residues most susceptible to oxidative modification are those containing sulfur and those with aromatic rings. Tryptophan reacts with radicals, ozone and singlet oxygen to form the end product N-formylkynurenine (NFK). We recently described a novel anti-NFK antiserum and validated its use in immunological assays for the specific detection of NFK in isolated proteins and protein mixtures. Here we photo-oxidize rose bengal-containing HaCaT keratinocyte cells and examine the results using fluorescent confocal microscopy and staining with anti-NFK antiserum and markers for both Golgi and mitochondria. We show that photosensitization mediates the accumulation of NFK and that NFK can be detected in photosensitized cells with only slightly decreased viability. Additionally, we detect NFK-modified proteins in both Golgi and mitochondria of photosensitized cells. These experiments demonstrate that we have developed a tool for the specific detection of oxidized tryptophan residues in cells and suggest that this tool could be useful in tracking the fate of these oxidized proteins. 相似文献
2.
Sruthy Baburaj Jayachandran Parthiban Sarvar Aminovich Rakhimov Rasheedah Johnson Ludmila Sukhomlinova Paul Luchette Steffen Jockusch Malcolm D. E. Forbes Jayaraman Sivaguru 《Photochemistry and photobiology》2023,99(3):901-905
The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals. Based on spin trapping experiments, radicals generated upon UV exposure is likely responsible for the degradation of the system. The radical generation is competitively inhibited by the addition of stabilizers. 相似文献
3.
Sanjana Ghosh Upendra Chitgupi Ulas Sunar Jonathan F. Lovell 《Photochemistry and photobiology》2023,99(2):844-849
Porphyrin-phospholipid (PoP) liposomes loaded with Doxorubicin (Dox) have been demonstrated to be an efficient vehicle for chemophototherapy (CPT). Multidrug resistance (MDR) of cancer cells is a problematic phenomenon in which tumor cells develop resistance to chemotherapy. Herein, we report that Dox-resistant tumor cells can be ablated using our previously described formulation termed long-circulating Dox loaded in PoP liposomes (LC-Dox-PoP), which is a PEGylated formulation containing 2 mol. % of the PoP photosensitizer. In vitro studies using free Dox and LC-Dox-PoP showed that human ovarian carcinoma A2780 cells were more susceptible to Dox compared to the corresponding Dox-resistant A2780-R cells. When CPT was applied with LC-Dox-PoP liposomes, effective killing of both nonresistant and resistant A2780 cell lines was observed. An in vivo study to assess the efficiency of LC-Dox-PoP showed effective tumor shrinkage and prolonged survival of athymic nude mice bearing subcutaneous Dox-resistant A2780-R tumor xenografts when they were irradiated with a red laser. Biodistribution analysis demonstrated enhanced tumoral drug uptake in Dox-resistant tumors with CPT, suggesting that increased drug delivery was sufficient to induce ablation of resistant tumor cells. 相似文献
4.
Brittany P. Rickard Xianming Tan Suzanne E. Fenton Imran Rizvi 《Photochemistry and photobiology》2023,99(2):793-813
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants linked to adverse outcomes, including for female reproductive biology and related cancers. We recently reported, for the first time, that PFAS induce platinum resistance in ovarian cancer, potentially through altered mitochondrial function. Platinum resistance is a major barrier in the management of ovarian cancer, necessitating complementary therapeutic approaches. Photodynamic therapy (PDT) is a light-based treatment modality that reverses platinum resistance and synergizes with platinum-based chemotherapy. The present study is the first to demonstrate the ability of photodynamic priming (PDP), a low-dose, sub-cytotoxic variant of PDT, to overcome PFAS-induced platinum resistance. Comparative studies of PDP efficacy using either benzoporphyrin derivative (BPD) or 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) were conducted in two human ovarian cancer cell lines (NIH:OVCAR-3 and Caov-3). BPD and PpIX are clinically approved photosensitizers that preferentially localize to, or are partly synthesized in, mitochondria. PDP overcomes carboplatin resistance in PFAS-exposed ovarian cancer cells, demonstrating the feasibility of this approach to target the deleterious effects of environmental contaminants. Decreased survival fraction in PDP + carboplatin treated cells was accompanied by decreased mitochondrial membrane potential, suggesting that PDP modulates the mitochondrial membrane, reducing membrane potential and re-sensitizing ovarian cancer cells to carboplatin. 相似文献
5.
6.
Amaneh Javid Shahin Ahmadian Ali Akbar Saboury Seyed Mehdi Kalantar Saeed Rezaei-Zarchi Sughra Shahzad 《Applied biochemistry and biotechnology》2014,173(1):36-54
Magnetite nanoparticles are particularly attractive for drug delivery applications because of their size-dependent superparamagnetism, low toxicity, and biocompatibility with cells and tissues. Surface modification of iron oxide nanoparticles with biocompatible polymers is potentially beneficial to prepare biodegradable nanocomposite-based drug delivery agents for in vivo and in vitro applications. In the present study, the bare (10 nm) and polyethylene glycol (PEG)–(3-aminopropyl)triethoxysilane (APTES) (PA) modified (17 nm) superparamagnetic iron oxide nanoparticles (SPIO NPs) were synthesized by coprecipitation method. The anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately encapsulated into the synthesized polymeric nanocomposites for localized targeting of human ovarian cancer in vitro. Surface morphology analysis by scanning electron microscopy showed a slight increase in particle size (27?±?0.7 and 30?±?0.45 nm) with drug loading capacities of 70 and 61.5 % and release capabilities of 90 and 93 % for the DOX- and PTX-AP-SPIO NPs, respectively (p?<?0.001). Ten milligrams/milliliter DOX- and PTX-loaded AP-SPIO NPs caused a significant amount of cytotoxicity and downregulation of antiapoptotic proteins, as compared with same amounts of free drugs (p?<?0.001). In vivo antiproliferative effect of present formulation on immunodeficient female Balb/c mice showed ovarian tumor shrinkage from 2,920 to 143 mm3 after 40 days. The present formulation of APTES–PEG-SPIO-based nanocomposite system of targeted drug delivery proved to be effective enough in order to treat deadly solid tumor of ovarian cancer in vitro and in vivo. 相似文献
7.
TUNG Chen-Ho GUAN Jing-QuInstitute of Photographic Chemistry Chinese Academy of Sciences Beijing China 《中国化学》1996,14(6):541-548
The photochemical reactions of azobenzene (AB) incorporated into different solvent-swollen Nafion membranes were investigated. The location of azobenzene in water-swollen Nafion membranes was different from that in methanol-swollen Nafion membranes, which was responsible for the different photochemical reactions of AB. In methanol-swollen Nafion membranes only trans-cis isomerization took place, while in water-swollen Nafion membranes photochemical cyclization of AB occurred after rapid trons-cis isomerization. The relation between the relative quantum yields and the light intensity showed that the cyclization was a two-photo process. The numbers of AB molecules per cluster (nAB /cluster) in Nafion membranes with different AB concentrations and different water contents were calculated. Under the experimental condition two competitive photocyclization mechanisms were suggested by nAB /cluster in Nafion membranes, relative quantum yields of the cyclization, and the change of the ratio of benzidine to benz 相似文献
8.
Sohan Patil Shalini Pandey Amit Singh Prof. Mithun Radhakrishna Prof. Sudipta Basu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(35):8229-8235
Aggregation-induced-emission luminogens (AIEgens) have gained considerable attention as interesting tools for several biomedical applications, especially for bioimaging due to their brightness and photostability. Numerous AIEgens have been developed for lighting up the subcellular organelles to understand their forms and functions not only healthy but also unhealthy states, such as in cancer cells. However, there is lack of easily synthesizable, biocompatible small molecules for illuminating mitochondria (powerhouses) inside cells. To address this issue, an easy and short synthesis of new biocompatible hydrazide–hydrazone-based small molecules with remarkable aggregation-induced emission (AIE) properties is described. These small-molecule AIEgens showed hitherto unobserved AIE properties due to dual intramolecular H-bonding confirmed by theoretical calculation, pH- and temperature-dependent fluorescence and X-ray crystallographic studies. Confocal microscopy showed that these AIEgens were internalized into the HeLa cervical cancer cells without showing any cytotoxicity. One of the AIEgens was tagged with a triphenylphosphine (TPP) moiety, which successfully localized in the mitochondria of HeLa cells in a selective way compared to L929 noncancerous fibroblast cells. These unique hydrazide–hydrazone-based biocompatible AIEgens can serve as powerful tools to illuminate multiple subcellular organelles to elucidate their forms and functions in cancer cells for next-generation biomedical applications. 相似文献
9.
The addition of methanol to C60 in the presence of acetylglycine (AG) was carried out under irradiation.The novel compound,1,4-dimethoxyl-l,4-dihydrofullerene (1),was isolated and characterized by FTIR,UV-vis,1H and 13C NMR,and FDMS. 相似文献
10.
John Cody Vinci Piotr Bilski Richard Kotek Colin Chignell 《Photochemistry and photobiology》2010,86(4):806-812
Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation. 相似文献
11.
Mahsa Gholizadeh Mohammad Amin Doustvandi Fateme Mohammadnejad Mahdi Abdoli Shadbad Habib Tajalli Oronzo Brunetti Antonella Argentiero Nicola Silvestris Behzad Baradaran 《Molecules (Basel, Switzerland)》2021,26(22)
Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients. 相似文献
12.
Jason P. Holland Melanie Gut Simon Klingler Rachael Fay Amaury Guillou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(1):33-48
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed. 相似文献
13.
The most recent data relating to the incidence of, and mortality from, the three commonest forms of skin cancer, namely basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous melanoma (CM), in the Black African, Colored, Asian/Indian and White population groups in South Africa are reviewed. While exposure to solar ultraviolet radiation is the major environmental risk factor for BCC in all four groups, for SSC in the White and Asian/Indian groups and for CM in the White group, this is unlikely to be the case for most SCCs in the Black African group and for most CMs in the Black African and Asian/Indian groups. Strategies for practical personal photoprotection in South Africa are discussed with particular emphasis on people at heightened risk of skin cancer including the White population group, those with HIV or oculocutaneous albinism and outdoor workers. 相似文献
14.
15.
S. V. Chapyshev V. F. Lavitskii A. V. Akimov E. Ya. Misochko A. V. Shastin D. V. Korchagin G. V. Shilov S. M. Aldoshin 《Russian Chemical Bulletin》2008,57(3):524-531
The molecular and crystal structures of 4-amino-2,6-diazido-3,5-dichloropyridine and 6-amino-2,4-diazido-1,3,5-triazine, as
well as the paramagnetic photolysis products of their crystals at 77 K, were studied using X-ray diffraction analysis and
ESR spectroscopy. Triplet nitrenes generated during the photolysis of diazidopyridine form triplet—triplet nitrene pairs,
whose ESR spectrum corresponds to the quintet spin state. The high-spin state (S = 2) results from the exchange interaction
between two triplet molecules with the zero-field splitting parameters |D| = 1.0280 cm−1 and |E| = 0.0038 cm−1 and the γ angle between two C—N nitrene bonds equal to 133°. This angle is close to an angle of 136.2° between the C-N bonds
of two adjacent molecules in the crystal structure. No formation of the triplet—triplet nitrene pairs is observed during the
photolysis of crystalline diazidotriazine, whose molecules lie in the parallel planes.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 513–520, March, 2008. 相似文献
16.
Tadeusz Sarna 《Photochemistry and photobiology》2023,99(2):866-868
The mechanism of very efficient relaxation of the melanin-photoexcited states, responsible for the photoprotective action of the pigment, remains a subject for intense investigation. The most recent study by C. Grieco, F. Kohl, and B. Kohler, entitled “Ultrafast radical photogeneration pathways in eumelanin,” addresses key issues of melanin photophysics and photochemistry. By using femtosecond broad-band pump probe-transient absorption measurements, the researchers were able to identify the absorption spectrum of DOPA melanin radicals for the first time and proposed two distinct mechanisms of radical formation—photoionization and photoinduced charge separation. The observed photodynamic of melanin radicals suggests a new paradigm in which the ultrafast excited state deactivation is due to the efficient recombination of melanin radicals created promptly by photoexcitation. 相似文献
17.
《Chemical physics letters》1987,138(5):415-418
The photochemical production of F centers in KBr.Se2− crystals has been investigated using crystals doped by a method different to that used by others. The formation of F centers is a complicated process and depends on the intensity of irradiating light, temperature and wavelength. Low-power irradiation favors F center formation by ionization of free Se2− in freshly quenched crystals. Low-temperature UV laser irradiation forms both normal F centers and one other center with an absorption band very close to the normal F center. The nature of this second center is not known. 相似文献
18.
Shweta Hegde S. S. Joshi Tulsi Mukherjee Sudhir Kapoor 《Research on Chemical Intermediates》2014,40(3):1125-1133
In the present work, we report the photochemical synthesis of gold nanoparticles in N,N′-dimethylformamide by addition of a photocatalyst like thiourea-modified polyoxometalate (γ-SiW12O40). The polyoxometalate behaves as an electron relay. Reduction of the polyoxometalate takes place under UV irradiation followed by a transfer of electrons to the gold ions, leading to the formation of gold nanoparticles. The formation of the gold particles was monitored with time by UV–Vis spectrophotometry. The polyoxometalate also acts as a stabilizing agent and helps in controlling the size of the nanoparticles. The shape and size distribution was obtained from transmission electron microscopy studies. Spherical and monodisperse gold nanoparticles of ~10 nm size were obtained. 相似文献
19.
Witold Korytowski Jared C. Schmitt Albert W. Girotti 《Photochemistry and photobiology》2010,86(4):747-751
Singlet oxygen attack on cholesterol (Ch), a prominent monounsaturated lipid of mammalian cell plasma membranes, gives rise to three hydroperoxide (ChOOH) isomers, 5α-OOH, 6α-OOH and 6β-OOH, the latter two in lower yield than 5α-OOH, and 6α-OOH in lowest yield. A third possible positional isomer, 7α-OOH and 7β-OOH, is produced by free radical attack. In the presence of iron and ascorbate (Fe/AH), 5α-OOH or 6β-OOH in phosphatidylcholine/Ch/ChOOH (20:15:1 by mol) liposomes was reduced to its corresponding alcohol, the rate constant being approximately the same for both ChOOHs. Using [14C]Ch as an in situ probe, we found that liposomal 5α-OOH readily set off free radical-mediated (chain) peroxidation reactions when exposed to Fe/AH, whereas 6β-OOH under the same conditions did not. Moreover, liposomal 5α-OOH triggered robust chain peroxidation in [14C]Ch-labeled L1210 cells, leading to cell death, whereas 6β-OOH was essentially inert in this regard. Thus, 5α-OOH and 6β-OOH undergo iron-catalyzed reductive turnover, but only the former can provoke toxic membrane damage. These novel findings have important implications for UVA-induced photodamage in Ch-rich tissues like skin and eye, where 1O2 often plays a major role. 相似文献
20.
Aldoximes undergo rapid dehydration with H2SO4/ SiO2 solid support, under microwave irradiation in dry media to afford nitriles in high yields. 相似文献