首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
LS‐177 is a novel small‐molecule kinase inhibitor employed to interrupt the c‐Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for determination of LS‐177 in rat plasma and tissues. The biosamples were extracted by liquid–liquid extraction with methyl tert‐butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile–0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were <10.5% and the accuracy (relative error) was from ?12.5 to 12.5% at all quality control levels. Excellent recovery and negligible matrix effects were observed. Stability studies showed that LS‐177 was stable during the preparation and analytical processes. The UPLC‐MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple‐dose oral administration of LS‐177. The tissue distribution study exhibited significant higher uptakes of LS‐177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In the present study, an ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) approach was designed to measure the rat plasma levels of verubecestat with diazepam as the internal standard. Acetonitrile-based protein precipitation was applied for sample preparation, then the analyte verubecestat was subjected to gradient elution chromatography with a mobile phase composed of acetonitrile (A) and 0.1% formic acid in water (B). Verubecestat was monitored by m/z 410.1 → 124.0 transition for quantification by multiple reaction monitoring (MRM) in positive ion electrospray ionization (ESI) source. When the concentration of verubecestat ranged from 1 to 2500 ng/mL, the method exhibited good linearity. For verubecestat, the intra- and inter-day precision were determined with the values of 2.9–9.0% and 0.4–6.5%, respectively; and the accuracy ranged from −2.2% to 10.4%. Matrix effect, extraction recovery, and stability data were in line with the standard FDA guidelines for validating a bioanalytical method. The validity of the developed method was confirmed through the pharmacokinetic study.  相似文献   

4.
Humantenmine (HMT), the most toxic compound isolated from Gelsemium elegans Benth , is a well‐known active herbal compound. A rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to estimate the absolute oral bioavailability of HMT in rats. Quantification was performed by multiple reaction monitoring using electrospray ionization operated in positive ion mode with transitions of m/z 327.14 → m/z 296.19 for HMT and m/z 323.20 → m/z 236.23 for gelsemine (internal standard, IS). The linear range of the calibration curve was 1–256 nmol/L, with a lower limit of quantification at 1 nmol/L. The accuracy of HMT ranged from 89.39 to 107.5%, and the precision was within 12.24% (RSD). Excellent recovery and negligible matrix effect were observed. HMT remained stable during storage, preparation and analytical procedures. The pharmacokinetics of HMT in rats showed that HMT reached the concentration peak at 12.50 ± 2.74 min with a peak concentration of 28.49 ± 6.65 nmol/L, and the corresponding area under the concentration–time curve (AUC0–t ) was 1142.42 ± 202.92 nmol/L min after 200 μg/kg HMT was orally administered to rats. The AUC0–t of HMT given at 20 μg/kg by tail vein administration was 1518.46 ± 192.24 nmol/L min. The calculated absolute bioavailability of HMT was 7.66%.  相似文献   

5.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

6.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

7.
A novel, sensitive and rapid ultra‐performance liquid chromatography–tandem mass spectrometric method for the quantification of chikusetsusaponin IVa (CHS‐IVa) in rat plasma was established and validated. Plasma samples were pre‐treated by precipitation of protein with acetonitrile and chromatographed on a Waters Symmetry C18 analytical column (4.6 × 50 mm, i.d., 3.5 μm) using a mobile phase consisting of methanol and water containing 0.05% formic acid (55:45, v/v) at a flow rate of 0.4 mL/min. The deprotonated molecular ions [M ? H] were employed in electrospray negative ionization mode and selected reaction monitoring transitions were performed for detection. The calibration curves exhibited good linearity (r > 0.99) over the range of 0.5–1000 ng/mL for CHS‐IVa. The recoveries of CHS‐IVa were >92.5% and exhibited no severe matrix effect. This method was successfully applied in the pharmacokinetic study of CHS‐IVa in rats. For oral administration, the plasma concentrations of CHS‐IVa increased to a peak value at 0.35 ± 0.14 h, followed by a gradual decrease to the lower limit of quantitation in 24 h. For intravenous administration, the plasma concentrations of CHS‐IVa decreased quickly (t1/2, 1.59 ± 0.25 h). The absolute bioavailability of CHS‐IVa in rats was 8.63%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Taraxasterol, a pentacyclic triterpene from Taraxacum officinale, is one of the main active constituents of the herb. This study developed and validated a highly selective and sensitive liquid chromatography/tandem mass spectrometry for the determination of taraxasterol in rat plasma over the range of 9.0–5000 ng/mL. Chromatographic separation was achieved on a C18 (4.6 × 50 mm, 5.0 µm) column with methanol–isopropanol–water–formic acid (80:10:10:0.1, v/v/v/v) as mobile phase with an isocratic elution. The flow rate was 0.7 mL/min. After adding cucurbitacin IIa as an internal standard (IS), liquid–liquid extraction was used for sample preparation using ethyl acetate. The atmospheric pressure chemical ionization source was applied and operated in positive ion mode. Selected reaction monitoring mode was used for the quantification of transition ions m/z 409.4 → 137.1 for taraxasterol and m/z 503.4 → 113.1 for IS. The mean recoveries of taraxasterol in rat plasma ranged from 85.3 to 87.2%. The matrix effects for taraxasterol were between 98.5 and 104.0%. Intra‐ and inter‐day precision were both <11.8%, and the accuracy of the method ranged from ?7.0 to 12.9%. The method was successfully applied to a pharmacokinetic study of taraxasterol after oral administration of 7.75, 15.5 and 31.0 mg/kg in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A selective, sensitive and rapid LC–MS/MS method has been developed and validated as per US Food and Drug Administration regulatory guidelines for the simultaneous quantitation of colchicine and febuxostat in rat plasma. Colchicine and febuxostat were extracted from the rat plasma using 10% tert-butyl methyl ether in ethyl acetate using colchicine-d6 as an internal standard (IS). The chromatographic separation of colchicine, febuxostat and the IS was achieved using a mobile phase comprising 5 mm ammonium formate and 0.025% formic acid in acetonitrile (20:80, v/v) in isocratic mode on an Eclipse XDB-C18 column. The injection volume and flow rate were 5.0 μl and 0.9 ml/min, respectively. Colchicine and febuxostat were detected by positive electrospray ionization in multiple reaction monitoring mode using transition pairs (Q1 → Q3) of m/z 400.10 → 358.10 and 317.05 → 261.00, respectively. The assay was linear in the ranges of 0.25–254 and 2.60–622 ng/ml for colchicine and febuxostat, respectively. The inter- and intra-day precision values were 0.58–13.0 and 1.03–4.88% for colchicine and febuxostat, respectively. No matrix or carryover effects were observed during the validation. Both analytes were stable on the bench-top, in the autosampler and in storage (freeze–thaw cycles and long-term storage at −80 ° C). A pharmacokinetic study in rats was performed to show the applicability of the validated method.  相似文献   

12.
A sensitive and selective liquid chromatography with tandem mass spectrometry (LC‐MS/MS) was developed for determining the concentrations of novel Janus kinase inhibitor ASP015K and its sulfated metabolite M2 in rat plasma. This method involves solid‐phase extraction (SPE) from 25 μL of rat plasma. LC separation was performed on an Inertsil PH‐3 column (100 mm L ×4.6 mm I.D., 5 µm) with a mobile phase consisting of 10 mM ammonium acetate and methanol under linear gradient conditions. Analytes were introduced to the LC‐MS/MS through an electrospray ionization source and detected in positive‐ion mode using selected reaction monitoring. Standard curves were linear from 0.25 to 500 ng/mL (r ≥0.9964). This assay enabled quantification of ASP015K and M2 at a concentration as low as 0.25 ng/mL in rat plasma. Validation data demonstrated that the method is selective, sensitive and accurate. Further, we also successfully applied this method to a preclinical pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

14.
Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra‐high liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC‐C18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid–liquid extraction with ethyl acetate. The UPLC‐MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra‐ and inter‐day precision were both <10.2%, and the accuracy ranged from −11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L.  相似文献   

15.
Tetramethylpyrazine (TMP) has been widely used in the treatment of ischemic cerebrovascular disease. However, the mechanism of TMP and how to increase its bioavailability need to be further explored. In our study, an in vivo microdialysis sampling technique coupled with ultra‐performance liquid chromatography–mass spectrometry method was developed to investigate the pharmacokinetic properties of TMP and its interaction with different doses of borneol (BO) in rats. Linearity of TMP in brain and blood dialysates exhibited good linear relationships over the concentration range of 0.991–555.14 ng/mL. The specificity, linearity, accuracy, precision, matrix effect and stability were within acceptable ranges. The results demonstrated that BO had a marked impact on the pharmacokinetic properties of TMP. After co‐administration, the areas under the concentration–time curve (AUC) of TMP in brain and blood were significantly increased. Meanwhile, the peak concentration of TMP in brain was also enhanced. The AUCBrain/AUCBlood of TMP, increased from 44% to 56 and 60.8% after co‐administration with BO (15 and 30 mg/kg). The pharmacodynamic results showed that TMP co‐administration with BO enhanced the cerebral blood flow during the period of ischemia and reduced the infarct volume. Overall, it might be an effective way to treat stroke to use TMP co‐administered with BO.  相似文献   

16.
JCC76 is a novel nimesulide analog that selectively inhibits the human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer cell proliferation and tumor progression. To support further pharmacological and toxicological studies of JCC76, a novel and rapid method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) has been developed and validated for the quantification of the compound in rat plasma. A C18 column was used for chromatographic separation, and the mobile phase was aqueous ammonium formate (pH 3.7; 5 mm )–methanol (1:9, v/v) with an isocratic elution. With a simple liquid–liquid extraction procedure using the mixture of methyl tert‐butyl ether–hexane (1:2, v/v), the mean extraction efficiency of JCC76 in rat plasma was determined as 89.5–97.3% and no obvious matrix effect was observed. This method demonstrated a linear calibration range from 0.3 to 100 ng/mL for JCC76 in rat plasma and a small volume of sample consumption. The intra‐ and inter‐assay accuracy and precision were within ±10%. The pharmacokinetics of JCC76 was also profiled using this validated method in rats. In conclusion, this rapid and sensitive method has been proven to effectively quantify JCC76 for pharmacokinetics study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2–500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and ?80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half‐life and area under the concentration–time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Pteryxin is a coumarin compound naturally occurring in the roots of Radix Peucedani, a commonly used as traditional Chinese medicine for the treatment of certain respiratory diseases and hypertension. An UPLC‐MS/MS method was established to quantify pteryxin in mouse plasma and tissue homogenates. Isoimperatorin was used as internal standard (IS). The method was based on protein precipitation with methanol for sample preparation. Pteryxin and IS were separated using a UPLC? BEH C18 column and eluted with a mobile phase consisting of methanol and water (70:30, v/v) at a flow‐rate of 0.2 mL/min. MS/MS detection was carried out by monitoring the fragmentation of m/z 409.3–287.2 for pteryxin and m/z 271.3–185.2 for IS on a triple‐quadrupole mass spectrometer. The total run time was only 6 min. The results showed that it had good linearity over a wide concentration range (r > 0.999), and pteryxin was rapidly distributed and then eliminated from mouse plasma (t1/2 =1.463 h). The major distribution tissues of pteryxin in mice were liver, and pteryxin was enabled to cross the blood–brain barrier owing to its low polarity. There was no long‐term accumulation of pteryxin in mouse tissues. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号