首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Manganese phthalocyanine (MnPc) and copper phthalocyanine (CuPc)-modified electrodes were prepared using multi-walled carbon nanotubes (MWCNTs) as a support material. The catalyst materials were heat treated at four different temperatures to investigate the effect of pyrolysis on the oxygen reduction reaction (ORR) activity of these electrocatalysts. The MWCNT to metal phthalocyanine ratio was varied. Scanning electron microscopy (SEM) was employed to visualise the surface morphology of the electrodes and the x-ray photoelectron spectroscopic (XPS) study was carried out to analyse the surface composition of the most active catalyst materials. The ORR was studied in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Glassy carbon (GC) electrodes were modified with carbon nanotube-supported metal phthalocyanine catalysts using Tokuyama AS-4 ionomer. The RDE results revealed that the highest electrocatalytic activity for ORR was achieved upon heat treatment at 800 °C. CuPc-derived catalyst demonstrated lower catalytic activity as compared to the MnPc-derived counterpart, which is in good agreement with previous literature, whereas the activity of MnPc-based catalyst was higher than that reported earlier.  相似文献   

2.
This work demonstrates the performance of a bio‐inspired iron/sulfur/graphene nanocomposite as a non‐platinum electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The catalyst shows the most positive ORR onset potential (1.1 V vs. RHE) according to its unique structure in the alkaline medium (KOH solution, pH = 13) at low temperature (T = 298 K). The catalyst is evaluated by the rotating‐disk electrode (RDE) method under various rotating speeds (0–2,000 rpm) in the potential range ?0.02–1.18 V vs. a rechargeable hydrogen electrode (RHE). The number of transferred electrons, as one of the most important parameters, is almost constant over a wide range of potentials (0.1–0.8 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the FePc‐S‐Gr surface. The mean size of catalyst centers are in the nanoscale (<10 nm). The estimated Tafel slope in the appropriate range is about ?110 mV per decade at low current density, and E1/2 of FePc‐S‐Gr displays a negative shift of only 7.1 mV after 10,000 cycles.  相似文献   

3.
Iron phthalocyanine (FePc) with unique FeN4 site has attracted increasing interests as a promising non-precious catalyst. However, the plane symmetric structure endows FePc with undesired catalytic performance toward the oxygen reduction reaction (ORR). Here, we report a novel one-dimensional heterostructured ORR catalyst by coupling FePc at polyoxometalate-encapsulated carbon nanotubes (FePc-{PW12}@NTs) using host-guest chemistry. The encapsulation of polyoxometalates can induce a local tensile strain of single-walled NTs to strengthen the interactions with FePc. Both the strain and curvature effects of {PW12}@NT scaffold tune the geometric structure and electronic localization of FeN4 centers to enhance the ORR catalytic performance. As expected, such a heterostructured FePc-{PW12}@NT electrocatalyst exhibits prominent durability, methanol tolerance, and ORR activity with a high half-wave potential of 0.90 V and a low Tafel slope of 30.9 mV dec−1 in alkaline medium. Besides, the assembled zinc-air battery demonstrates an ultrahigh power density of 280 mW cm−2, excellent charge/discharge ability and long-term stability over 500 h, outperforming that of the commercial Pt/C+IrO2 cathode. This study offers a new strategy to design novel heterostructured catalysts and opens a new avenue to regulate the electrocatalytic performance of phthalocyanine molecules.  相似文献   

4.
Catalysts for the oxygen reduction reaction (ORR) were prepared on carbon black (C) using FeIIphthalocyanine (FePc) and Cl–FeIIItetramethoxyphenylporphyrin (ClFeTMPP), as Fe precursors with and without a pyrolysis step at 800 °C. CO poisoning of the ORR catalytic sites for all these Fe/N/C electrocatalysts was attempted at pH 1 and 13, but to no avail, even if an iron ion is known to occupy the center of the active sites in at least the unpyrolyzed FePc/C or ClFeTMPP/C. The exact nature of the active center of these Fe-based heat-treated catalysts may still be a subject of debate but, in light of the absence of CO poisoning for unpyrolyzed FePc/C and ClFeTMPP/C, resistance to CO poisoning by the heat-treated catalysts cannot be used as evidence that the active center of their catalytic site is devoid of iron.  相似文献   

5.
The oxygen reduction reaction (ORR) catalyzed by mononuclear and planar binuclear cobalt (CoPc) and iron phthalocyanine (FePc) catalysts is investigated in detail by density functional theory (DFT) methods. The calculation results indicate that the ORR activity of Fe-based Pcs is much higher than that of Co-based Pcs, which is due to the fact that the former could catalyze 4e- ORRs, while the latter could catalyze only 2e- ORRs from O2 to H2O2. The original high activities of Fe-based Pcs could be attributed to their high energy level of the highest occupied molecular orbital (HOMO), which could lead to the stronger adsorption energy between catalysts and ORR species. Nevertheless, the HOMO of Co-based Pcs is the ring orbital, not the 3d Co orbital, thereby inhibiting the electron transfer from metal to adsorbates. Furthermore, compared with mononuclear FePc, the planar binuclear FePc has more stable structure in acidic medium and more suitable adsorption energy of ORR species, making it a promising non-precious electrocatalyst for ORR.  相似文献   

6.
通过电化学交流阻抗法研究了3种金属酞菁类大环化合物(FePc, CoPc, FeCoPc2)在碱性溶液中对氧气还原反应(ORR)的电化学催化行为, 各电极的交流阻抗 Nyquist 图谱在高频区和低频区均呈现出2个较明显的半圆和半圆之间(中频区)的压扁的弧形, 采用Zsimpwin阻抗谱分析软件对-02 V(vs. Hg/HgO)电位下的各交流阻抗谱进行等效电路拟合, 提出空气电极ORR反应的等效电路, 并对等效电路中各动力学参数进行了解释, 通过分析得出金属酞菁在碱性溶液中对ORR催化反应是一个伴随中间产物HO-2的2电子转移过程. 同时, 等效电路的拟合结果表明, FeCoPc2/C作为ORR催化剂对减小Rc+Rct效果比FePc/C和CoPc/C明显, 具有更高的催化活性.  相似文献   

7.
Oxygen utilization in electrochemical energy generation systems requires to overcome the slow kinetics of oxygen reduction reaction (ORR). Herein, we have outstretched an efficient strategy in order for developing a bioinspired Zn (N4)/sulfur/graphitic carbon composite (Zn‐S‐Gc) with an effective performance for the ORR at low temperature. The catalyst composite was created by attaching the Zn (N4) centers in the form of zinc phthalocyanine on the sulfur‐linked graphitic carbon surface. The most positive ORR onset potential of about 1.00 V versus a reversible hydrogen electrode (RHE) was obtained due to the unique structure of a new catalyst in KOH solution (pH = 13) at low temperature (T = 298 K). The catalyst was evaluated using the rotating‐disk electrode method in the potential range of ?0.02–1.18 V versus RHE. The number of transferred electrons as one of the most important parameters (n > 3.70) is almost constant in a wide range of low overpotentials (0.1–0.6 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the catalyst surface. The estimated Tafel slope in an appropriate range is about ≈ ?133.3 mV/dec at a low current density and E1/2 of the electrocatalyst displays a negative shift of only 11 mV after 10,000 cycles. The mean size of the catalyst centers is on the nanoscale (<50 nm).  相似文献   

8.
Zeolite NaX was modified by Pt and Pt/Ru nanodispersed metallic clusters. The procedure of impregnation with acetylacetonate salt/acetone solution was applied. Scanning electron microscope analysis confirmed partial zeolite framework destruction. According to energy dispersive X-ray analysis, Pt/Ru ratio in sample was about 1. Electrochemical behavior of PtRu- and Pt-modified zeolites was investigated in alkaline solutions, 5 mM NaOH?+?1 M Na2SO4 and 0.1 M NaOH. The shape of cyclic voltammograms of 13XPtRu electrode, recorded in slightly alkaline solution, was greatly affected by the presence of hydrogen that remained in the sample after synthetic procedure. Oxygen reduction reaction (ORR) was investigated in an O2-saturated aqueous 0.1-M NaOH solution. The obtained Tafel slopes indicated ORR mechanism that involves one-electron discharge-determining step. According to Koutecky–Levich slope, the oxygen reduction reaction followed 4e? mechanism on both 13XPtRu and 13XPt electrode. The onset of ORR on 13XPtRu electrode was shifted toward more positive potentials in comparison to 13XPt electrode.  相似文献   

9.
Three different N-doped ordered porous carbons (CNx) were produced by a nanocasting process using polyaniline as the carbon and nitrogen precursor. A pyrolysis treatment of iron chloride-impregnated CNx under nitrogen is used in the preparation of the carbon composite catalysts, and this is followed by posttreatments and optimization of the iron loading and the pore size. Exploration of the catalytic activity of the CNx products for catalyzing the oxygen reduction reaction (ORR) using rotating disk electrode measurements and single-cell tests shows that the onset potential for ORR of the most effective catalyst in 0.5 M H2SO4 is as high as 0.9 V vs. the normal hydrogen electrode. A proton exchange membrane fuel cell constructed with the catalyst exhibits a current density as high as 0.52 A cm?2 at 0.6 V with 2 atm back pressure using a cathode catalyst loading of 6 mg cm?2. The average pore diameters of synthesized CNx-12, CNx-15, and CNx-16 are 0.7, 4.3, and 14 nm, respectively. It is observed that the pore size and specific surface area are an important factor for increased catalyst activity. The pore size of the most effective catalysts is found to be 4.3 nm.  相似文献   

10.
《Electroanalysis》2006,18(16):1564-1571
The work details the electrocatalysis of oxygen reduction reaction (ORR) in 0.5 M H2SO4 medium on a modified electrode containing a film of polyaniline (PANI) grafted multi‐wall carbon nanotube (MWNT) over the surface of glassy carbon electrode. We have fabricated a novel modified electrode in which conducting polymer is present as connected unit to MWNT. The GC/PANI‐g‐MWNT modified electrode (ME) is fabricated by electrochemical polymerization of a mixture of amine functionalized MWNT and aniline with GC as working electrode. Cyclic voltammetry and amperometry are used to demonstrate the electrocatalytic activity of the GC/PANI‐g‐MWNT‐ME. The GC/PANI‐g‐MWNT‐ME exhibits remarkable electrocatalytic activity for ORR. A more positive onset potential and higher catalytic current for ORR are striking features of GC/PANI‐g‐MWNT‐ME. Rapid and high sensitivity of GC/PANI‐g‐MWNT‐ME to ORR are evident from the higher rate constant (7.92×102 M?1 s?1) value for the reduction process. Double potential chronoamperometry and rotating disk and rotating ring‐disk electrode (RRDE) experiments are employed to investigate the kinetic parameters of ORR at this electrode. Results from RDE and RRDE voltammetry demonstrate the involvement of two electron transfer in oxygen reduction to form hydrogen peroxide in acidic media.  相似文献   

11.
张贵荣  徐柏庆 《催化学报》2013,34(5):942-948
使用旋转电极技术考察了一系列碳载金纳米颗粒(颗粒平均尺寸处在3~14 nm)在碱性电解质(0.5 mol/L KOH)中对氧还原反应的催化行为.随着金纳米颗粒尺寸由14 nm下降至3 nm,其对氧还原反应的本征活性和质量比活性均呈现持续走高趋势; 但金颗粒的纳米尺寸对氧还原反应的机理及分子氧还原过程中的电子转移数目并无显著影响.使用高分辨透射电镜技术表征了金纳米颗粒的形貌,通过对金颗粒表面不同位置原子的比例进行估算,发现金颗粒表面高能原子所占比例与金对氧还原反应的本征活性密切相关,表明高能表面原子决定着金催化剂对氧还原反应的本征活性.此外,还将金纳米颗粒对氧还原反应的本征催化活性与其表面电子结构进行了关联.  相似文献   

12.
开发低成本、高性能的氧还原反应(ORR)催化剂是当前的研究热点.虽然酞菁铁(FePc)在几十年前就被证明能高效地电催化氧还原反应,但由于其电子传导性和稳定性较差,无法取代商用的Pt/C催化剂.氮掺杂碳材料不仅化学性质稳定、电子传导性好,还有一定的氧还原催化活性.本文首先制备了聚苯乙烯@聚多巴胺球前驱体,经过高温碳化后制得了氮掺杂中空碳球,进而负载酞菁铁后制备了负载酞菁铁的氮掺杂中空碳球复合材料(FePc-NHCS).通过调整煅烧温度和酞菁铁的负载量,可进一步调控FePc-NHCS的多孔结构、石墨化程度、氮掺杂的种类与含量及酞菁铁的负载状态.优化后的FePc-NHCS在碱性电解质中显示出优异的ORR催化活性,其半波电位和稳定性均高于商用Pt/C催化剂.研究结果表明,掺杂与复合是增强单项催化组分活性的有效途径.此外,通过调控催化剂的结构和组分也能有效地优化催化剂的氧化还原性能.  相似文献   

13.
A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L?1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L?1 was obtained with a limit of detection and sensitivity of 0.56 μmol L?1 and 0.023 μA L μmol?1, respectively. The relative standard deviation for 10 determinations of 100 μmol L?1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.  相似文献   

14.
Pt nanoparticles-loaded carbon black (CB) was prepared from Pt carbonyl cluster complexes, and had much narrower size distribution than commercial Pt nanoparticles/CB. In the former the monodispersed Pt nanoparticles were highly dispersed on CB without aggregation even at high Pt loading of 80 wt.%. Hydrodynamic voltammograms in O2-saturated 0.05 M H2SO4 solution at 30 °C showed that the onset potential of oxygen reduction reaction (ORR) current for the monodispersed Pt nanoparticles/CB electrode was more positive than that for a polycrystalline Pt electrode and similar to that for the commercial Pt nanoparticles/CB electrode. Moreover, the mass activity for ORR for the monodispersed Pt nanoparticles/CB electrode was ca. 4.9 times higher than that for the commercial Pt nanoparticles/CB electrode, clearly indicating that the control of size distribution of Pt nanoparticles is meaningful for reducing the Pt consumption.  相似文献   

15.
对于碱性燃料电池的阴极反应,开发具有优异催化性能的新型催化剂至关重要.本工作采用一种简单的热解方法合成了硼、氮掺杂的二硫化钼(B,N-MoS2)材料并将其应用于氧还原(ORR)电催化分析.通过循环伏安法(CV)与线性扫描伏安法(LSV)等电化学分析方法,采用旋转盘电极(RDE)与旋转环盘电极(RRDE)等技术测试了该材...  相似文献   

16.
Anthraquinone groups were electrochemically grafted to glassy carbon (GC) electrodes via methylene linker to study the oxygen reduction reaction (ORR) in alkaline medium. Two different anthraquinone derivatives, 2-bromomethyl-anthraquinone or 2-chloromethyl-anthraquinone, were used to modify the GC electrode surface. Several modification conditions encompassing potential cycling and electrolysis at a fixed potential were employed in order to vary the surface concentration of MAQ groups (Γ MAQ) and to study the dependence of the O2 reduction behaviour on electrografting procedure. Cyclic voltammetry confirmed the presence of anthraquinone moieties attached to the GC electrode and Γ MAQ varied in the range of (0.5–2.4)?×?10?10 mol cm?2. Oxygen reduction was studied on MAQ-modified GC electrodes of various surface coverage using the rotating disc electrode (RDE) and rotating ring-disc electrode (RRDE) methods. The RDE and RRDE results of O2 reduction reveal that GC/MAQ electrodes show rather similar electrocatalytic behaviour towards the ORR yielding hydrogen peroxide as the final product.  相似文献   

17.
A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6~3.8 electrons are transferred with a H2O2 yield of 11.4 % at ?0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm?2 at 229.1 mA cm?2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm?2 at 285.4 mA cm?2).  相似文献   

18.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

19.
Overpotential for oxygen reduction reaction (ORR) at Au electrode is reported to be reduced by 0.27 V by the modification with boron nitride nanosheet (BNNS) but oxygen is reduced only to H2O2 by 2-electron process at Au electrode. Here we demonstrate that the decoration of BNNS with gold nanoparticles (AuNP) not only reduces the overpotential for ORR further by ca. 50 mV, but also opens a 4-electron reduction route to water. Both rotating disk electrode experiments with Koutecky–Levich analysis and rotating ring disk electrode measurements show that more than 50% of oxygen is reduced to water via 4-electron process at Au–BNNS/Au electrode while less than 20 and 10% of oxygen are reduced to water at the BNNS/Au and bare Au electrodes, respectively. Theoretical analysis of free energy profiles for ORR at the BN monolayer with and without Au8 cluster placed on Au(111) shows significant stabilization of adsorbed oxygen atom by the Au8 cluster, opening a 4-electron reduction pathway.  相似文献   

20.
采用微波合成法制备了多壁碳纳米管负载钴卟啉(CoTMPP/MWNT)电催化剂,利用透射电子显微镜对催化剂微观结构进行了表征,并通过旋转圆盘和旋转环盘技术对电催化剂的氧还原活性进行了评价.结果表明,与有机回流合成法制备的催化剂相比,微波法合成的CoTMPP/MWNT催化剂具有更好的氧还原性能,半波电位正向移动110mV;与多孔碳为载体的CoTMPP/BP2000催化剂相比,多壁碳纳米管为载体的CoTMPP/MWNT电催化剂的起始电位高10mV,还原电流损失低21%,表现出更好的氧还原活性和稳定性.在CoTMPP/MWNT电催化剂表面进行的氧还原过程中电子转移数为3·6,H2O2生成量为18%.MWNT独特的电子特性、强抗腐蚀能力及其与活性钴离子之间的相互作用有助于改善催化剂的氧化还原性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号