首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Young’s modulus, strain–stress behavior, fracture strength, and fracture toughness of (0≤×≤1) materials have been investigated in the temperature range 20–1,000°C. Young’s moduli of and , measured by resonant ultrasound spectroscopy, were 130±1 and 133±3 GPa, respectively. The nonlinear stress–strain relationship observed by four-point bending at room temperature was inferred as a signature of ferroelastic behavior of the materials. Above the ferroelastic to paraelastic transition temperature, the materials showed elastic behavior, but due to high-temperature creep, a nonelastic respond reappeared above ∼800°C. The room temperature fracture strength measured by four-point bending was in the range 107–128 MPa. The corresponding fracture toughness of , measured by single edge V-notch beam method, was 1.16±0.12 MPa·m1/2. The measured fracture strength and fracture toughness were observed to increase with increasing temperature. The fracture mode changed from intragranular at low temperature to intergranular at high temperature. Tensile stress gradient at the surface of the materials caused by a frozen-in gradient in the oxygen content during cooling was proposed to explain the low ambient temperature fracture strength and toughness.  相似文献   

2.
Journal of Solid State Electrochemistry - The effect of scandium content in CaZr1–x Sc x O3–x/2 on electrical conductivity and oxygen exchange kinetics was investigated. The electrical...  相似文献   

3.
4.
Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 ? x )1 ? y Mn0.5Ti0.5O3 ? δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 ? δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 ? δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 ? δ and a cathode of Sm0.5Sr0.5CoO3 ? δ are manufactured and tested using the voltammetry technique.  相似文献   

5.
6.
Strontium additions in (La1?x Sr x )1?y Mn0.5Ti0.5O3?δ (x?=?0.15–0.75, y?=?0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223?K in the p(O2) range from 10?19 to 0.5?atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0?×?10?6?K?1 at 300–1370?K and oxygen pressures from 10?21 to 0.21?atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3?δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3?δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω?×?cm2 in humidified 10?% H2–90?% N2 atmosphere at 1073?K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.  相似文献   

7.
In this work, fresh and CO2-exposed specimens of Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF) are examined by atomic force microscopy (AFM) using amplitude-modulated Kelvin probe force microscopy (KPFM) and also electrostatic force microscopy (EFM) to characterize the early stages of the formation of reaction products due to reaction with gaseous CO2. A comparison is made with results from electron microscopy on the same samples. BSCF specimens exposed for 24 and 240 h to an atmosphere of 99.9 % CO2 at 900 °C, respectively, were analyzed and compared with non-exposed specimens. The observation of interconnected carbonate islands on BSCF forming a continuous carbonate layer after some exposure to CO2 indicates a Stranski–Krastanov or Volmer–Weber growth mechanism of the carbonate layer. Our results demonstrate that the measurement of surface potential variations by means of KPFM and EFM constitutes a very sensitive technique to detect the formation of reaction layers on gas permeation membranes such as BSCF. In contrast to electron microscopy techniques, scanning probe techniques permit the investigation of the topography and of electrochemical characteristics of the sample surface as received and without further preparation.  相似文献   

8.
Transport numbers of ions and protons are measured on ceramic samples of La1 ? x Sr x ScO3 ? ?? (x = 0.01?C0.15); partial conductivities (hole, proton, and oxygen-ion) are determined in the temperature range of 500?C900°C at pH2O = 0.04?C2.35 kPa and pO2 from air to 10?15 Pa.  相似文献   

9.
The longitudinal conductivity of La1 ? x Sr x F3 ? x solid solution films (x = 0–0.24) with thicknesses of 40–260 nm grown on glass ceramics at temperatures from room temperature to 300°C and frequencies of 10?1–106 Hz was studied by impedance spectroscopy. The concentration dependence of film conductivity on the SrF2 content had a maximum near x = 0.05. An equivalent circuit was constructed on the basis of the impedance plots to describe migration processes. The DC conductivity was evaluated for all samples under study. The activation energies were estimated from the temperature dependences of the DC conductivities of the films. The resulting dependences of electrophysical parameters were compared with those for bulk materials in terms of the relaxation conductivity model.  相似文献   

10.
Calcium- and strontium-containing lanthanum orthoferrites have been studied using magnetic dilution method. It has been shown that the iron-atom clusters with competing ferro- and antiferromagnetic exchange interactions can exist. By using Mossbauer spectroscopy, Fe(IV) atoms have been found in the La1?0.33x Ca0.33x FexAl1?x O3 solid solutions and Fe(III) atoms in two different surroundings have been found in the La1?0.33x Sr0.33x Fe x Al1?x O3 solid solutions. The compositions of paramagnetic clusters stable at the infinite dilution have been proposed basing of the magnetic susceptibility and Mossbauer spectroscopy data.  相似文献   

11.
(LFN, 0<x<0.6) perovskites were synthesised by a solid-state route and were characterised by powder XRD, dilatometry, four-point DC conductivity measurements and electro-chemical impedance spectroscopy (EIS) on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 (CGO10) electrolyte. All the compounds were of single phase, and they belong to either the cubic or the hexagonal crystal system. The thermal expansion coefficient (TEC) was in the range 10.7*10−6 K−1 to 13.4*10−6 K−1, which continued to increase with increasing nickel content. The highest electronic conductivity was measured for the composition giving a value of 670 S/cm at 380 °C. The highest electro-chemical performance was measured for the composition giving an area specific resistance as low as 5.5 Ωcm2 at 600 °C based on EIS measurements on a cone-shaped electrode. Composite cathodes made from and CGO10 revealed a rather low performance due to an un-optimised micro-structure.
K. KammerEmail: Phone: +45-46775835Fax: +45-46775858
  相似文献   

12.
Electrochemical reductive dissolution of Li–Mn–O and Li–Fe–Mn–O spinels and Li+ extraction/insertion in these oxides were performed using voltammetry of microparticles. Both electrochemical reactions are sensitive to the Fe/(Fe+Mn) ratio, specific surface area, Li content in tetrahedral positions, and Mn valence, and can be used for electrochemical analysis of the homogeneity of the elemental and phase composition of synthetic samples. The peak potential (E P) of the reductive dissolution of the Li–Mn–O spinel is directly proportional to the logarithm of the specific surface area. E P of Li–Fe–Mn–O spinels is mainly controlled by the Fe/(Fe+Mn) ratio. Li+ insertion/extraction can be performed with Mn-rich Li–Fe–Mn–O spinels in aqueous solution under an ambient atmosphere and it is sensitive to the regularity of the spinel structure, in particularly to the amount of Li in tetrahedral positions and the Mn valence. Electronic Publication  相似文献   

13.
The influence of partial substitution of Fe with Ti on the oxygen transport properties of La1−x Sr x FeO3 membranes was investigated in view of their application for oxygen separation. Samples of composition (y=0, 0.2) were prepared and their oxygen transport properties characterised by potential step relaxation and by oxygen permeation measurement in an air/argon gradient. With the first technique, chemical diffusion and surface exchange (k S) coefficients were obtained by fitting of the current relaxation data to a single expression valid over the complete time range. The Ti-substituted composition gave slightly larger values of and k S. The trend was opposite for the measured oxygen permeation flux. In the latter experience, ordering of oxygen vacancies was observed at lower temperature, reducing significantly the performance of the material.  相似文献   

14.
The phase composition was studied and overall conductivity of oxides La1 ? x Sr x ScO3 ? ?? (x = 0.01?0.20) was measured as dependent on air humidity (pH2O = 0.04?2.35 kPa) in the temperature range from 100 to 900°C. The samples were synthesized in air at 1600°C. They are single-phase, with a perovskitetype structure with orthorhombic distortions and the density of 94?C99%. The conductivity measurements were carried out using the impedance technique and four-probe dc technique. The contributions of bulk and grain boundary resistances were determined, effective conductivity activation energies were calculated.  相似文献   

15.
利用高温固相反应法和溶胶-凝胶法制备了La0.75Sr0.25Cr0.5Mn0.5O3钙钛矿复合氧化物粉体。采用XRD,TEM对粉体物相组成及颗粒形貌进行表征,并以制备的两种粉体作为敏感材料分别制成管状传感器,测试了其NO2气敏性能。结果表明:采用高温固相反应法和溶胶-凝胶法在不同焙烧温度下,均可制得单相La0.75Sr0.25Cr0.5Mn0.5O3粉体,采用溶胶-凝胶法在800℃焙烧2 h得到的粉体粒径约为20 nm;传感器输出电动势信号对NO2浓度之间呈良好的线性关系;溶胶-凝胶法制得粉体的气敏性能优于高温固相反应法制得粉体的气敏性能。  相似文献   

16.
Electrochemical properties of composite cathodes consisting of La0.8Sr0.2Mn1?x Cu x O3 (LSMCu, 0?≤?x?≤?0.2) and Ce0.8Gd0.2O2?x (GDC) were determined by impedance spectroscopy, and conduction mechanism for the composite cathodes was investigated by a near-edge X-ray absorption fine-structure analysis (NEXAFS). LSMCu–GDC cathodes showed lower polarization resistance (R p) than LSM–GDC up to 750 °C, whereas they exhibited better performance at higher temperature (≥800 °C). The best performance was achieved with the LSMCu10–GDC cathode: 0.27 and 0.08?Ω cm2 at 800 °C and 850 °C, respectively. NEXAFS and refinement results confirmed that Cu doping caused the oxidation of Mn3+ to Mn4+ and lattice contraction. This additional Mn4+ can lead to the formation of oxygen vacancies when Mn4+ is converted to Mn3+ at relatively high temperatures (above 600 °C). This in turn contributes to improved oxygen ion transport in LSM. The LSMCu–GDC composite cathode can thus be considered a suitable potential cathode for SOFC applications.  相似文献   

17.
The effect of the substitution of highly charged cations W6+ for Co3+/Co4+ cations in the SrCo0.8Fe0.2O3–δ structure on the transport properties of new membrane materials has been studied.  相似文献   

18.
Thermal behavior of the mixed oxides La2?x Sr x CoO4 (0.1 < x < 1.5) in the temperature range 1200–1700 K was studied. The use of the ceramic synthesis method makes it possible to obtain homogeneous samples at the calcination temperature of 1673 K. It was found by the high-temperature mass-spectrometry method that a charge can be depleted of cobalt oxide during the high-temperature synthesis.  相似文献   

19.
Anti-perovskite manganese nitrides with the general formula Mn3(Cu0.5SixGe0.5?x)N (x = 0.05, 0.1, 0.15, 0.2) were fabricated by mechanical ball milling followed by solid state sintering. The temperature dependence of thermal expansions, magnetic properties and electrical conductivities were investigated in the temperature range of 77–300 K. The results show that the operation-temperature window of negative thermal expansion (NTE) shifts to lower temperature and the magnitude of NTE becomes smaller with increasing Si content. Very low average coefficients of thermal expansion of 1.3 × 10?6 K?1 and 1.65 × 10?6 K?1 were observed in Mn3(Cu0.5Si0.1Ge0.4)N and Mn3(Cu0.5Si0.15Ge0.35)N within the temperature range of 77–300 K, respectively. In addition, the electrical conductivities of all the samples are in the range of 2.5–3.5 × 105 (ohm m)?1.  相似文献   

20.
The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temperature dependence to the intermediate temperature range, 500-600 °C, indicates that the rate of oxygen exchange, in air, increases with increasing iron mole fraction, but saturates at the highest iron mole fraction for the given series. The observed behavior is concomitant with corresponding increases in both electronic and ionic conductivity with increasing x in SrTi(1-x)Fe(x)O(3-δ). Including literature data of related perovskite-type oxides Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ), La(0.6)Sr(0.4)CoO(3-δ), and Sm(0.5)Sr(0.5)CoO(3-δ), a linear relationship is observed in the log-log plot between oxygen exchange rate and oxide ionic conductivity with a slope fairly close to unity, suggesting that it is the magnitude of the oxide ionic conductivity that governs the rate of oxygen exchange in these solids. The distribution of oxygen isotopomers ((16)O(2), (16)O(18)O, (18)O(2)) in the effluent pulse can be interpreted on the basis of a two-step exchange mechanism for the isotopic exchange reaction. Accordingly, the observed power law dependence of the overall surface exchange rate on oxygen partial pressure turns out to be an apparent one, depending on the relative rates of both steps involved in the adopted two-step scheme. Supplementary research is, however, required to elucidate which of the two possible reaction schemes better reflects the actual kinetics of oxygen surface exchange on SrTi(1-x)Fe(x)O(3-δ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号