共查询到20条相似文献,搜索用时 31 毫秒
1.
Journal of Solid State Electrochemistry - In this work, a series of rationally designed hybrid membranes composed of poly(vinylidene fluoride) (PVDF) as polymer matrix and silica nanoparticles... 相似文献
2.
The low crystallinity poly(vinylidene fluoride)/tetraethyl orthosilicate silane (PVDF/TEOS) composite separator with a finger-like pore structure for lithium-ion battery has been successfully prepared by non-solvent-induced phase separation (NIPS) technique. The PVDF/TEOS composite separator shows the excellent wettability and electrolyte retention properties compared with Celgard 2320 separator. AC impedance spectroscopy results indicate that the novel PVDF/TEOS composite separator has ion conductivity of 1.22 mS cm−1 at 25 °C, higher than that of Celgard 2320 separator (0.88 mS cm−1). The lithium-ion transference number of PVDF composite separator added 0.7% TEOS was 0.481, better than that of Celgard 2400 (0.332). What is more, the lithium-ion batteries assembled with PVDF/TEOS composite separator show good cycling performance and rate capability. 相似文献
3.
Journal of Solid State Electrochemistry - The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic... 相似文献
4.
Microporous poly(vinylidene fluoride) (PVdF) separators for lithium-ion batteries, used in liquid organic electrolytes, have been characterized with respect to the swelling phenomena on dense PVdF membranes (obtained through hot pressing). In the first and second parts of this study, we have described the swelling equilibria and swelling kinetics of dense PVdF. Here the thermal properties of PVdF gels and their irreversible modifications induced by swelling are characterized. Particular attention is paid to crystallinity modifications, polymer plasticization, and membrane degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2308–2317, 2004 相似文献
5.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature ( Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the D‐ E hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003 相似文献
6.
The viscosity behaviour of dilute dimethylformamide solutions of poly(vinylidene fluoride)-poly (methyl methacrylate) and poly(vinylidene fluoride)-polystyrene has been studied at 25°C. The polymer concentration ranges are such that neither phase separation nor microgel formation occurs, although we are very close to theta conditions. The intrinsic viscosity and viscosity interaction parameter of the ternary mixtures have been calculated. The estimation of the compatibility of the above polymer pairs has been studied based on: a) specific viscosities; b) viscosity interaction parameters, according to Krigbaum and Wall formalism, and c) viscosity interaction parameters of a system formed by a dilute probe polymer in the presence of a matrix polymer and a small molecule solvent. 相似文献
8.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF 2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF 2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc. 相似文献
9.
An amphiphilic comb polymer consisting of poly(vinylidene fluoride‐ co‐chlorotrifluoroethylene) [P(VDF‐ co‐CTFE)] main chains and poly(oxyethylene methacrylate) (POEM) side chains was synthesized using direct initiation of the chlorine atoms in CTFE units through atom transfer radical polymerization, as confirmed by 1H NMR and FTIR spectroscopy. The P(VDF‐ co‐CTFE)‐ g‐POEM comb polymer was introduced as an additive to prepare poly(vinylidene fluoride) antifouling ultrafiltration membranes. As the contents of comb polymer increased, the mechanical properties of membranes slightly decreased due to the decreased crystallinity of the membranes, as revealed by universal testing machine and X‐ray diffraction. However, water contact angle measurement and X‐ray photoelectron spectroscopy showed that the hydrophilic POEM segments spontaneously segregated on the membrane surfaces. As a result, the antifouling property of the membranes containing P(VDF‐ co‐CTFE)‐ g‐POEM comb polymer was considerably improved with a slight change of water flux. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 183–189, 2010 相似文献
10.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
The piezoelectricity of PVDF thermoelect rets formed with vacuum-coated aluminum electrodes has been investigated in detail. The piezoelectricity depends on the β-form crystal structure of PVDF homopolymer and copolymers. However, the piezoelectricity is not attributed to the stress dependence of the spontaneous polarization of β-form crystals, but rather to the persistent polarization arising from trapped charges. The trapping mechanism is discussed. 相似文献
12.
Different contents of carbon nanotubes (CNTs) were introduced into a miscible poly(vinylidene fluoride) ( PVDF)/poly(methyl methacrylate) ( PMMA) blend. The interfacial affinity between CNTs and components of the blend was evaluated by calculating the interfacial tension. The dispersion and microstructure of CNTs in the nanocomposites were investigated through scanning electron microscope and rheological measurement. The effect of CNTs on the crystallization of PVDF was comparatively investigated through nonisothermal and isothermal crystallization processes. The results showed that CNTs exhibited stronger interfacial affinity to PMMA. Homogeneous dispersion of CNTs in the nanocomposites was achieved. Largely enhanced crystallization temperature and increased crystallinity of PVDF were obtained by adding CNTs during the nonisothermal crystallization process. The results obtained from the isothermal crystallization process proved that CNTs induced the concentration fluctuation in the sample, which resulted in the formation of spherulites with different types, i.e., the banded spherulites and compact spherulites. Furthermore, both the crystallization temperature and the content of CNTs exhibited great influence on the crystalline morphology of PVDF. 相似文献
13.
The solubility behavior of poly(vinylidene fluoride) (PVDF) in about 50 liquids was investigated. The results were input to a computer program to obtain a three-dimensional representation of the polymer solubility region in the Hansen space; the values of dispersion, hydrogen bonding, and polar components of the total solubility parameter δ t,P were evaluated. The latter was also estimated from limiting viscosity number data in the eight solvents found. Both experimental methods gave δ t,P values in very good agreement. Comparisons among our findings, the literature, and calculated results are discussed. 相似文献
14.
Molecular motions in poly(vinylidene fluoride) were studied by the dielectric technique. Three distinct absorption peaks (α c, α a, and β) were observed in the frequency range from 0.1 cps to 300 kcps and in the temperature range from ?66 to 100°C. The molecular mechanisms for these absorptions and their temperature dependence are discussed, and results are compared with x-ray diffraction and the NMR measurements. It is concluded that the α c absorption located at 97°C (1 kcps) is related to molecular motion in the crystalline region. The α a absorption located at ?27°C (1 kcps) can be interpreted as due to the micro-Brownian motion of the amorphous main chains. The β absorption located at ?47°C (1 kcps) is attributed to local oscillation of the frozen main chains. 相似文献
15.
A vibrational analysis has been carried out for the two crystalline forms of poly(vinylidene fluoride) (PVF 2). The Raman spectrum of the planar form of PVF 2 is also reported. The band assignments are made on the basis of the spectral properties including the infrared dichroism and Raman intensities. A force field is derived based on a force constant refinement procedure utilizing the frequency data for both crystal forms. 相似文献
18.
The thermal expansion behavior of oriented poly(vinylidene fluoride) films has been studied over the temperature range ?75 to +20°C. Representative high draw, low draw, and voided samples have been examined. For all samples at low temperatures the transverse thermal expansion coefficients, both in the plane of the sheet and perpendicular to it, are similar and have positive values of about 10 ?4 K ?1. In the draw direction the thermal expansion coefficients are much smaller in magnitude and can be either positive or negative, the room temperature values varying in the range +4 × 10 ?6 K ?1 for low draw samples to ?14 × 10 ?6 K ?;1 for high draw samples. As the temperature is raised the coefficients also increase but, above the glass transition temperature, the value in the draw direction, α 1, shows a rapid fall in value. It is shown that this effect can be related quantitatively to the presence of an internal shrinkage stress. Differences between samples can then be primarily related to differences in the magnitude of this internal stress and to differences in the temperature dependence of the modulus of the sample. 相似文献
19.
We report the transcrystallinity of poly(vinylidene fluoride) on several different types of substrate materials. The supermolecular structure and its development were characterized with polarization microscopy, whereas differential scanning calorimetry was used for monitoring the isothermal and nonisothermal crystallization kinetics. Although only approximately applicable, an Avrami–Ozawa analysis of the latter yielded reliable exponents, which characterized the transcrystalline nucleation conditions, the related dimensionality of growth, and the resulting texture. The results complemented and agreed quantitatively with those of light microscopy. Several polymers, including poly(ethylene terephthalate), polytetrafluoroethylene, and polyimide, induced distinct transcrystallinity, but only a spherulitic supermolecular structure developed on glass and metallic substrates. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2130–2139, 2001 相似文献
|