首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the behavior of ordered mesoporous carbon (OMC)-supported catalysts as anodes for direct methanol fuel cells (DMFC), fed with an aqueous methanol solution. OMC samples were prepared by the nanocasting method from a polymerized furan resin using mesoporous silica as a template. Pt and PtRu nanoparticles were supported on OMC with high dispersion, the particle size being 2.4 nm at PtRu loading of 15 wt.%. The resulting catalysts were analyzed using carbon monoxide stripping voltammetry, cyclic voltammetry, and chronoamperometry in three-electrode experiments and recording cell voltage vs. current density curves in practical DMFC. It was found that PtRu-catalyzed technical electrodes exhibited good activity towards methanol electrooxidation in half-cell experiments under fuel-cell-relevant conditions. Specifically, Pt85Ru15/OMC catalyst showed the highest catalytic enhancement compared to Pt/OMC for the steady-state electrooxidation of methanol at 60 °C and 0.5 V, by a factor of 22 in 2-M MeOH solution. DMFC single cells yielded an open-circuit voltage of 0.625 V at 60 °C. Polarization curves indicate that DMFC with OMC-supported Pt85Ru15 catalyst at the anode exhibited the best performance.  相似文献   

2.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

3.
Three-dimensionally (3D) ordered mesoporous carbon sphere arrays (OMCS) are explored to support high loading (60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction (MOR). The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area (ECSA) (73.5 m2 g-1) and electrocatalytic activity (0.69 mA cm-2) for the MOR compared with the commercial 60 wt% Pt/C catalyst.  相似文献   

4.
A series of 3 wt% Ru embedded on ordered mesoporous carbon (OMC) catalysts with different pore sizes were prepared by autoreduction between ruthenium precursors and carbon sources at 1123 K. Ru nanoparticles were embedded on the carbon walls of OMC. Characterization technologies including power X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR) were used to scrutinize the catalysts. The catalyst activity for Fischer-Tropsch synthesis (FTS) was measured in a fixed bed reactor. It was revealed that 3 wt% Ru-OMC catalysts exhibited highly ordered mesoporous structure and large surface area. Compared with the catalysts with smaller pores, the catalysts with larger pores were inclined to form larger Ru particles. These 3 wt% Ru-OMC catalysts with different pore sizes were more stable than 3 wt% Ru/AC catalyst during the FTS reactions because Ru particles were embedded on the carbon walls, suppressing particles aggregation, movement and oxidation. The catalytic activity and C5+ selectivity were found to increase with the increasing pore size, however, CH4 selectivity showed the opposite trend. These changes may be explained in terms of the special environment of the active Ru sites and the diffusion of products in the pores of the catalysts, suggesting that the activity and hydrocarbon selectivity are more dependent on the pore size of OMC than on the Ru particle size.  相似文献   

5.
The present paper describes an easy and quick synthesis of hollow core mesoporous shell carbon (HCMSC) simply templated from unpretreated solid core mesoporous shell silica using a cheap precursor like sucrose. Physical characterizations showed uniform spherical carbon capsules with a hollow macroporous core of ca. 305- and 55-nm-thick mesoporous shell, forming a well-developed 3-D interconnected bimodal porosity. High specific surface area and large pore volume were also confirmed, suggesting the obtained HCMSC as a promising catalyst support. HCMSC-supported Pt (nominal 20 wt.%) with an average Pt particle size of 1.9 nm was synthesized by wet impregnation, and a signal of strong interaction between carbon support and platinum was confirmed by X-ray photoelectron spectroscopy. In cyclic voltammetry and linear sweep voltammetry tests, the Pt/HCMSC electrode showed significantly higher electrocatalytic activity for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) if compared with commercial Pt/Vulcan catalyst. The durability tests by cyclic voltammetry showed for the Pt/HCMSC a lower electrochemical active surface area loss than the commercial one in acidic solution. All the primary tests suggested that the Pt/HCMSC, due to its particular structure and the high dispersion of noble metal particles, is a promising catalyst for fuel cell applications, for MOR and ORR.  相似文献   

6.
采用水热法和牺牲模板法相结合制备具有中空树枝结构的三氧化钨载体(d-WO3),在其表面进一步负载活性成分Pt,得到纳米Pt/d-WO3复合催化剂。采用X射线粉末衍射(XRD)、透射电镜(TEM)和比表面积和孔结构分析(BET)等对催化剂的形貌和结构进行了表征。结果表明,三氧化钨具有长6 μm和宽2 μm的中空树枝状结构,孔径分布主要集中在20~120 nm,比表面积为24 m2/g,平均粒径为7.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了Pt/d-WO3催化剂在酸性溶液中对甲醇的电催化氧化性能。结果表明,Pt/d-WO3催化剂比Pt/C和Pt/WO3催化剂对甲醇有更高的电催化氧化活性和稳定性。d-WO3所具有的中空介孔结构和双功能作用机理有利于甲醇在铂表面的直接脱氢氧化过程。  相似文献   

7.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即<3 nm时活性差,>3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

8.
以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即3 nm时活性差,3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。  相似文献   

9.
Ordered mesoporous carbon (OMC) supported gold nanoparticles of size 3–4 nm having uniform dispersion were synthesized by sol‐immobilization method. OMCs such as CMK‐3 and NCCR‐56 with high surface area and uniform pore size were obtained, respectively, using ordered mesoporous silicas such as SBA‐15 and IITM‐56 as hard templates, respectively. The resulting OMC supported monodispersed nano‐gold, i. e., Au/CMK‐3 and Au/NCCR‐56, exhibited excellent performance as mild‐oxidizing catalysts for oxidation of glycerol with high hydrothermal stability. Further, unlike activated carbon supported nano‐gold catalysts (Au/AC), the OMC supported nano‐gold catalysts, i. e., Au/CMK‐3 and Au/NCCR‐56, show no aggregation of active species even after recycling. Thus, in the case of Au/CMK‐3 and Au/NCCR‐56, both the fresh and regenerated catalysts showed excellent performane for the chosen reaction owing to an enhanced textural integrity of the catalysts and that with remarkable selectivity towards glyceric acid. The significance of the OMC supports in maintaining the dispersion of gold nanoparticles is explicit from this study, and that the activity of Au/AC catalyst is considerably decreased (~50 %) upon recycling as a result of agglomeration of the active gold nanoparticles over the disordered amorphous carbon matrix.  相似文献   

10.
Tungsten carbide and graphitic carbon (WC/GC) composite has been synthesized by a simple solid-state pyrolysis method from an in situ route. The results indicate that the synthesized sample has a large specific surface area (S BET) of 198 m2 g?1, and the WC nanoparticles (NPs) with a narrow particle size are well dispersed on the graphitic carbon. After loading Pt nanoparticles, the prepared Pt/WC/GC catalyst exhibits a mass activity of 416.1 mA mg?1 Pt toward methanol electrooxidation, which is much higher than that of commercial Pt/C (JM) (231.2 mA mg?1 Pt). Moreover, the onset potential is 100 mV more negative than that on Pt/C (JM) electrocatalyst. In addition, the Pt/WC/GC catalyst has stronger resistance to CO poisoning than the commercial Pt/C (JM). Its superior electrochemical performance could be attributed not only to the synergistic effect between Pt and WC NPs but also to the excellent electrical conductivity of GC and proper porous structure for desirable mass transportation in a porous electrode.  相似文献   

11.
A nitrogen (N)-doped mesoporous carbon material exhibiting ultra-high surface area was successfully synthesized from sheep bones via a facile and low-cost method. The obtained carbon material had an ultra-high specific surface area of 1961 m2 g?1 and provided rich active sites for the oxygen reduction reaction (ORR), which in turn resulted in high electrocatalytic activity. It was found that the pore size distribution for the newly prepared carbonaceous material fell in the range of 1–4 nm. Benefiting from its high surface area and the presence of pyridine-N and quaternary-N species, the as-prepared carbon material exhibited excellent ORR activity in an oxygen-saturated 0.1 M KOH solution, compared to commercial Pt/C (10 wt%). Due to its high ORR catalytic activity, stability and low-cost, using sheep bone as C and N precursors to produce N-doped carbon provides an encouraging step toward the goal of replacing commercial Pt/C as fuel cell cathode electrocatalyst.  相似文献   

12.
A stepwise method is described for the accurately controlled growth of Pt nanoparticles supported on ordered mesoporous carbons (Pt-OMC) by the nanocasting of carbon and metal precursors in the pore channels of mesoporous silicas functionalized with Si-H groups. Results obtained from N2 adsorption/desorption isotherms and transmission electron microscopy showed well-dispersed Pt nanoparticles (2-3 nm) on Pt-OMC with high surface area (837 m2 g−1) and regular pore channels (2.9 nm), which facilitate reactant/product diffusion. X-ray diffraction and X-ray photoelectron spectroscopy indicated that Pt nanoparticles in the Pt-OMC sample were mostly present in the metallic form of a face-centered cubic (fcc) crystalline structure. The Pt-OMC catalyst was found to have superior electrocatalytic properties during oxygen reduction reaction as compared to typical commercial electrocatalysts.  相似文献   

13.
核壳结构碳化钨复合微球催化剂对甲醇电催化性能   总被引:1,自引:0,他引:1  
以偏钨酸铵微球为前驱体,在不同反应时间和CO/CO2气氛条件下,通过原位还原碳化反应制备了具有核壳结构碳化钨复合微球。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等对催化剂的形貌和结构进行了表征分析。硼氢化钠还原法将平均粒径为4.6 nm的Pt纳米粒子均匀分布在其表面,得到核壳结构碳化钨复合催化剂。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,与Pt/WC-15 h和JM Pt/C催化剂的电化学性能相比,Pt/WC-6 h催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。碳化钨复合微球表面少量WO2成分的存在有利于甲醇在其表面的电催化氧化过程的发生。  相似文献   

14.
Nitrogen doped carbon nanosheets supported molybdenum carbides nanoparticles (MoxC/NCS) have been synthesized by tuning the mass ratio of melamine and ammonia molybdate. The Mo2C/NCS-10 exhibits superior electrocatalytic performance and stability for HER, which was attributed to N-doped carbon nanosheets, small particle size, mesoporous structure, and large electrochemical active surface area.  相似文献   

15.
The effect of secondary (diethanolamine) and tertiary (triethanolamine) alkanolamines as catalysts on the formation of mesoporous Stöber silica nanoparticles by sol–gel method was studied. The particles were characterized by thermogravimetry and differential thermal analysis, Fourier transform infrared spectroscopy, N2 physisorption measurements, and field emission scanning electron microscopy. By using ammonia and different alkanolamines as catalysts, the Brunauer–Emmet–Teller (BET) surface area and pore volume increased in the order of ammonia < diethanolamine < triethanolamine. A maximum BET surface area of 140.1 m2 g?1 and pore volume of 0.66 cm3 g?1 were obtained from triethanolamine catalyzed silica particles. The average particle size of silica prepared by ammonia and different alkanolamines as catalysts decreased in the order of ammonia > diethanolamine > triethanolamine. The role of different alkanolamines on the textural properties and particle size of silica is explained in terms of their relative steric hindrance and basicity.  相似文献   

16.
A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cleaned and pre-oxidized multiwall carbon nanotubes (MWC- NTs) from Pt salt by using CO as the reductant. MOR activity has been characterized by both cyclic voltammetry and chronoamperometry, the current density and mass specific current at the peak potential (ca. 0.9 V vs. RHE) reaches 11.6 mA/cm^2 and 860 mA/mgpt, respectively. After electro-deposition of Ru onto the Pt/MWCNTs surface, the catalysts show steady state mass specific current of 20 and 80 mA/mgpt at 0.5 and 0.6 V, respectively.  相似文献   

17.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   

18.
A composite comprised of oxygen reduction reaction (ORR) catalyst and oxygen evolution reaction (OER) catalyst was designed and applied as a bifunctional electrocatalyst for the air electrode of the lithium-air battery. The ordered mesoporous carbon nitride (MCN) prepared by a nano hard-templating approach displayed a surface area as high as 648 m2 g?1 and a large pore volume of 0.7 cm3 g?1 and acted as both the ORR catalyst and the support for the in situ-formed OER catalyst of Pt particles with a diameter of 3–4 nm. The electrochemical performances of the electrode were examined in a solid-state lithium-air cell structured as Li/LATP-based electrolyte/cathode, which demonstrated a higher round-trip efficiency and lower overpotential compared with the Pt@AB and MCN electrodes. The combination of the OER and ORR catalysts is proved as an effective way to improve the performance of lithium-air batteries.  相似文献   

19.
Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc?=?1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M?=?Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts.  相似文献   

20.
Two mesoporous carbons (with 15 (CIC-15) and 26 nm (CIC-26) diameter pores) were synthesized using a silica colloid imprinting method, loaded with 10 wt.% Pt, and then evaluated (against Vulcan? carbon (VC)) as oxygen reduction (ORR) catalysts for use in proton exchange membrane fuel cells. Both Pt/CICs reproducibly out-performed Pt/VC, with Pt/CIC-15 demonstrating higher ORR activity than Pt/CIC-26, despite its smaller pore size and lower surface area. Transmission electron tomography showed that the Pt nanoparticles (4–5 nm diameter) are fully deposited throughout the pores of the CICs and that the pore distribution in CIC-26 is partially ordered, while CIC-15 shows no ordering of its pores. Importantly, using the powerful imaging capabilities of transmission electron tomography, a first-time correlation is demonstrated between the ORR activity and the wall thickness of the carbon support materials. Pt/CIC-15 has significantly thicker walls, giving a lower measured electronic resistance, a lower ORR Tafel slope, and thus better performance overall compared to Pt/CIC-26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号