首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyaniline encapsulated silicon (Si/PANI) nanocomposite as anode materials for high-capacity lithium ion batteries has been prepared by an in situ chemical polymerization of aniline monomer in the suspension of Si nanoparticles. The obtained Si/PANI nanocomposite demonstrates a reversible specific capacity of 840 mAh g?1 after 100 cycles at a rate of 100 mA g?1 and excellent cycling stability. The enhanced electrochemical performance can be due to that the polyaniline (PANI) matrix offers a continuous electrically conductive network as well as enhances the compatibility of electrode materials and electrolyte as a result of suppressing volume stress of Si during cycles and preventing the agglomeration of Si nanoparticles.  相似文献   

2.
A novel porous Si/S-doped carbon composite was prepared by a magnesiothermic reaction of mesoporous SiO2, subsequently coating with a sulfur-containing polymer-poly(3,4-ethylene dioxythiophene), and a post-carbonization process. The as-prepared Si composite was homogeneously coated with disordered S-doped carbon with 2.6 wt.%?S in the composite and retained a high surface area of 58.8 m2?g?1. The Si/S-doped carbon composite exhibited superior electrochemical performance and long cycle life as an anode material in lithium ion cells, showing a stable reversible capacity of 450 mAh g?1 even at a high current rate of 6,000 mA?g?1.  相似文献   

3.
Nano tetrapod based on conducting polythiophene (PTh) and tin-phosphate (SnP) were synthesized by in situ chemical oxidative polymerization. The morphology of the resulting polythiophene tinphosphate composite was characterized by elemental analysis, fourier transform infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The physico-chemical characterization carried out on the composite showed that SnP was modified by conducting PTh with an enhancement of various properties. On the basis of highest distribution coefficient values for Hg(II), the composite was also used for the preparation of Hg(II) selective membrane electrode. The electrode showed working concentration range of 1 × 10?1 to 1 × 10?7 with Nernstian slope of 29.29 mV per decade change in concentration and the electrode may be used for wide working pH range of 4–8 having quick response time about 23 s. The life of electrode is 4 months without any notable drift in potential.  相似文献   

4.
The wide use of lithium ion batteries (LIBs) has created much waste, which has become a global issue. It is vital to recycle waste LIBs considering their environmental risks and resource characteristics. Anode graphite from spent LIBs still possess a complete layer structure and contain some oxygen-containing groups between layers, which can be reused to prepare high value-added products. Given the intrinsic defect structure of anode graphite, copper foils in LIB anode electrodes, and excellent properties of graphene, graphene oxide–copper composite material was prepared in this work. Anode graphite was firstly purified to remove organic impurities by calcination and remove lithium. Purified graphite was used to prepare graphene oxide–copper composite material after oxidation to graphite oxide, ultrasonic exfoliation to graphene oxide (GO), and Cu2+ adsorption. Compared with natural graphite, preparing graphite oxide using anode graphite consumed 40% less concentrated H2SO4 and 28.6% less KMnO4. Cu2+ was well adsorbed by 1.0 mg L?1 stable GO suspension at pH 5.3 for 120 min. Graphene oxide–copper composite material could be successfully obtained after 6 h absorption, 3 h bonding between GO and Cu2+ with 3/100 of GO/CuSO4 mass ratio. Compared to CuO, graphene oxide–copper composite material had better catalytic photodegradation performance on methylene blue, and the electric field further improved the photodegradation efficiency of the composite material.  相似文献   

5.
Abstract

High purity (~99%) nano silica with an average particle size of ~100 nm was extracted at pH 3 at 650°C from a natural resource, rice husk, using alkaline extraction followed by acid precipitation method. Using nano silica as a precursor, silicon (Si) nanoparticles have been synthesized by high-temperature magnesiothermic reduction method. The prepared sample was characterized by X-ray diffraction, particle size analyzer, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray fluorescence analyzer, and UV–Vis spectroscopy. The comprehensive characterization studies indicate the pure phase formation of Si and the variation of particle size from 70 nm to 100 nm for samples synthesized at different sintering temperatures. Moreover, the silicon nanoparticles produced at 850°C have pure phase formation, high purity, and good absorption peaks. The efficiency calculated through IV characteristics is found to be increasing in silicon and ruthenium combination (2.67%), which is better than that achieved from the conventional solar cells. The produced silicon nanoparticles could be applied as an anode material for solar cell fabrication.  相似文献   

6.
Si/C composite nanofibers were prepared by electrospinning and carbonization using polyacrylonitrile as the spinning medium and carbon precursor. The effect of electrolyte additive succinic anhydride (SA) on the electrochemical performance of Si/C composite nanofiber anodes was investigated. Results show that after 50 cycles, the discharge capacity of Si/C composite nanofiber anode with the SA-added electrolyte is 34 % higher than that with additive-free electrolyte. At 150th cycle, the capacity retention of Si/C composite nanofiber anode with SA-added electrolyte is 82 % under 70 % state-of-charge. It is demonstrated that adding additive SA in the electrolyte is an effective and economic way to improve the cyclability of high-capacity Si/C composite nanofibers for next-generation high-energy lithium-ion batteries.  相似文献   

7.
As an anode material for lithium-ion batteries (LIBs), silicon offers among the highest theoretical storage capacity, but is known to suffer from large structural changes and capacity fading during electrochemical cycling. Nanocomposites of silicon with carbon provide a potential material platform for resolving this problem. We report a spray-pyrolysis approach for synthesizing amorphous silicon–carbon nanocomposites from organic silane precursors. Elemental mapping shows that the amorphous silicon is uniformly dispersed in the carbon matrix. When evaluated as anode materials in LIBs, the materials exhibit highly, stable performance and excellent Coulombic efficiency for more than 150 charge discharge cycles at a charging rate of 1 A/g. Post-mortem analysis indicates that the structure of the Si–C composite is retained after extended electrochemical cycling, confirming the hypothesis that better mechanical buffering is obtained when amorphous Si is embedded in a carbon matrix.  相似文献   

8.
In this work, organic-inorganic composite materials of polyaniline and manganese oxide were synthesized and investigated their electrochemical performance. This composite material was prepared by oxidizing aniline with methyl triphenylphosphonium permanganate as a novel organic oxidant via aqueous, emulsion, and interfacial polymerization pathways. This process led to the formation of polyaniline-sulfate salt (PANI-SA-Mn5O8). Formation of polyaniline-sulfate salt was confirmed from FT-IR, EDAX, and XRD results. Formation of Mn5O8 was supported by XRD spectrum. PANI-SA-Mn5O8 prepared via emulsion polymerization pathway was obtained in porous nanorod morphology with high conductivity (9.4 S cm?1) compared to that of the other sample prepared via interfacial pathway (1.7 S cm?1). Whereas, aqueous polymerization pathway resulted in sheet-like morphology with a conductivity of 0.8 S cm?1. These composites were used as pseudocapacitive electrode materials. Electrochemical characterization (cyclic voltammetry, charge-discharge, and electrochemical impedance measurement) showed that composite prepared via emulsion polymerization pathway gave better electrochemical performance, and showed good cycling behavior.  相似文献   

9.
Carbonaceous mesophase spherule (CMS) is a commercial anode material for rechargeable lithium batteries. A composite anode material of SnNi deposited carbonaceous mesophase spherule was prepared by co-precipitation method. The structural and electrochemical characterization of the SnNi/CMS composite anode material was studied. According to the measurement of its electrochemical characterization, the prepared SnNi/CMS composite anode material shows much better electrochemical performance than CMS. The first discharge capacity of 360 mA h g−1 was obtained for the SnNi/CMS composite anode material, and its discharge capacity maintained at 320–340 mA h g−1 in the following cycles. It indicates that the modification of CMS with SnNi alloy can further improve the intercalation performance of CMS. SnNi/CMS composite material shows a good candidate anode material for the commercial rechargeable lithium batteries.  相似文献   

10.
The nanostructured Si/graphite composites embedded with the pyrolyzed polyethylene glycol was synthesized from coarse silicon and natural graphite by a facile and cost-effective approach. The Si/C nanocomposite showed the fluffy carbon-coated structure, which was confirmed by the SEM and TEM measurements. The as-obtained Si/C nanocomposite, employed as anode material in lithium-ion batteries, exhibited significantly enhanced rate capability and cycling stability. The improved electrochemical stability of the composite was evaluated by EIS and galvanostatically charge/discharge test. A reversible capacities as high as 85% and 91% of the initial charge capacities, could be maintained for the Si/C nanocomposite electrode after 40 cycles under the high current densities of 500 and 1,000?mA?g?1, respectively. The relatively low cost and excellent electrochemical capability of the Si/C nanocomposite would well meet the challenge in rapid charge and discharge for large-size lithium-ion rechargeable batteries.  相似文献   

11.
Surface polymerization by ion-assisted deposition (SPIAD) is used here to grow novel polythiophene and polyphenyl thin films on a silicon surface by hyperthermal, mass-selected thiophene cations coincident with a thermal beam of alpha-terthiophene or p-terphenyl neutrals. X-ray photoelectron spectroscopy (XPS) observes a large enhancement in film growth for SPIAD compared with either thiophene ions or alpha-terthiophene exposure alone. Changes in S/Si and C/Si ratios from XPS, direct observation of higher polymerization products by mass spectrometry, characteristic vibrations in the Raman data, and enhanced stability in a vacuum all indicate that 200 eV SPIAD polythiophene films are most efficiently polymerized at a 1/150 ion/neutral ratio. Other ion/neutral ratios are less efficient at film growth, in the order 1/150 > 1/450 > 1/900 > direct ion deposition > 1/50. Changes in C/Si ratios and higher polymerization products indicate polymerization occurs in SPIAD polyphenyl films grown with a 1/100 ion/neutral ratio. Furthermore, thiophene ions are found to incorporate into some, but not all, of the polymerization products observed in mass spectrometry.  相似文献   

12.
锂离子电池用多孔硅/石墨/碳复合负极材料的研究   总被引:2,自引:0,他引:2  
在两步高能球磨和酸蚀条件下制得了多孔硅/石墨复合材料,并对其进行碳包覆制成多孔硅/石墨/碳复合材料。通过TEM,SEM等测试手段研究了多孔硅材料的结构。作为锂离子电池负极材料,电化学测试结果表明多孔硅/石墨/碳复合材料相比纳米硅/石墨/碳复合材料有更好的循环稳定性。同时,改变复合体配比、热解碳前驱物、粘结剂种类和用量也会对材料的电化学性能产生较大的影响。其中使用质量分数为10%的LA132粘结剂的电极200次循环以后充电容量保持在649.9 mAh·g-1,几乎没有衰减。良好的电化学性能主要归因于主活性体-多孔硅颗粒中的纳米孔隙很好地抑制了嵌锂过程中自身的体积膨胀,而且亚微米石墨颗粒和碳的复合也减轻了电极材料的体积效应并改善了其导电性。  相似文献   

13.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

14.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。  相似文献   

15.
等离子体辅助球磨Si-C复合负极材料及其电化学性能研究   总被引:1,自引:0,他引:1  
首次采用介质阻挡放电等离子体辅助高能两次球磨制得Si-C复合材料,其结构为微纳尺度硅颗粒均匀分散于微米级碳基体上. Si-C复合电极首周期循环放电容量为1259 mAh·g-1,20和100周期循环的容量分别为474和396 mAh·g-1. 该电极充放电曲线和交流阻抗测试的结果表明,复合材料中的硅和碳均参与锂离子嵌/脱反应,且其电荷传导阻抗明显低于纯Si.  相似文献   

16.
The evolution of the polymerization of a light-cured methacrylate-based composite material (Pekalite) used in dentistry was studied. Fourier transform infrared spectroscopy and thermal analysis (TA) showed that with increasing the photo-polymerization time from 5 to 60 s, the degree of conversion increases from 32.5 to 59.6 % and thermal stability of the composite material increases from 144.6 to 270 °C. Growth of photo-polymerization time from 5 to 60 s produces an improvement in the mechanical strength of the composite material from 153 to 248 MPa. Spectral analysis and TA are two complementary and rapid methods for determining the degree of polymerization of composite materials used in dentistry.  相似文献   

17.
Designed Graphite-Si/SiOx/C composite electrodes for rechargeable lithium-ion batteries are prepared with different binder of carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR) and polyimide (PI). Electrode performance of composites highly depends on the selection of binder. The Si-based/graphite composite electrode containing PI binder shows very stable cycle stability with the retention higher than 95 % after 30 cycles; however, the capacity of composite electrode with CMC-SBR binder fades to less than 80 % after 20 cycles. The improvement mechanism of PI binder is characterized by SEM, EDS mapping, adhesive strength test, and electric performance test. The surface of anode film does not show crack after several cycles, and the SEI on the surface of Si/SiOx/C particle is characterized. It is found that anode film peeing off strength matches well with the composite cycle stability. This result is further supported with cell disassembly result. We believe that improvement of anode film adhesion strength is an effective way to get stable long cycle life.  相似文献   

18.

The purpose of the study was to analyze the correlation between the quantity of eluted monomers from dental resin-based composite using reverse-phase HPLC and the degree of conversion (DC) using micro-Raman spectroscopy, and to evaluate the influence of the energy of polymerization delivered on the composite material and the applied resin layer thickness on these properties. There was direct proportion in degree of conversion and inverse proportion in monomer elution when the energy of light polymerization was increased from 20 to 40 J cm−2; however, further increase in energy density did not influence significantly the DC and the elution of monomers. Investigating the depth of cure significant differences could be measured both in DC and the elution of monomers. 1 mm layer increment up to 3 mm from the top led to 10 % decrease in DC and 30–35 % increase in monomer elution. Further increase in depth from 3 to 4 mm caused 30 % drop in DC and 55 % increase in the amount of leached monomers. The overall result of the findings indicates that direct correlation exists between DC of composite and the elution of unreacted monomers.

  相似文献   

19.
Tin oxide (SnO2)/graphene composite was synthesized from SnCl2?·?2H2O and graphene oxide (GO) by a wet chemical-hydrothermal route. The GO was reduced to graphene nanosheet (GNS) and flower-like SnO2 nano-crystals with size about 40 nm were homogeneously distributed on the surface of GNS. The SnO2/graphene composites delivered a superior first discharge capacity of 1941.9 mAhg?1 with a reversible capacity of 901.7 mAhg?1 at the current density of 100 mAg?1. Moreover, even at higher densities of 200 and 500 mAg?1, the SnO2/graphene composite still maintained enhanced cycling stability. After 40 cycles, the discharge capacity was still maintained at 691.1 mAhg?1 at the current density of 100 mAg?1. The SnO2/graphene composite displayed an outstanding Li-battery performance with large reversible capacity and enhanced rate performance, which can be attributed to the highly uniform distribution of SnO2 nanoparticles and high reduction degree of graphene. This result strongly indicates that the SnO2/graphene composite was a promising anode material in high-performance lithium-ion batteries.  相似文献   

20.
Cellulose composite sponges with good mechanical, heat-insulating and flame retardant properties were constructed by a facile method. Simultaneous polymerization of dopamine and hydrolysis of organosilicon in the suspension of microfibrillated cellulose could provide the stiffness and flame ratardancy of the composite sponges. The hybrid sponges had low density (15.1–28.5 mg/cm3) and desirable compression strength (76.6–135.8 kPa). Scanning electron microscopy (SEM) and thermal conductivity tests revealed that the sponges are composed of a three-dimensional cellulosic network and the porous structure endowed them low thermal conductivity [~0.046 W/(m K)]. With the addition of organosilicon (45 wt%) and polydopamine (PDA) (10 wt%), a 456% improvement in BET surface area of the sponge could be achieved. The limiting oxygen index (LOI) of the composite sponge could be as high as 29.5 with 15 wt% PDA and could self-extinguish at once when it was removed from torch. That was owing to the promoted materials carbonization ability of silicon and radical scavenging activity of dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号