首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas-phase basicity of allylphosphine (2-propenylphosphine) was measured by means of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry techniques. A complete survey of the allylphosphine-H(+) potential energy surface, carried out through the use of high-level G2(MP2) and B3LYP/6-311+G(3df,2p) calculations, allows us to conclude that, under low-pressure, low-energy ICR conditions, the interaction between the protonated reference base, B(ref)H(+), and allylphosphine leads to a complex in which B(ref)H(+) attaches to the phosphorus atom of allylphosphine, where the electrostatic potential is strongly attractive. Hence, in the first step only the phosphorus protonated species should be formed. Its isomerization to yield the C(beta)-protonated form, which is the global minimum of the potential energy surface, implies a very high activation barrier that cannot be overtaken under normal experimental ICR conditions. Therefore, the main conclusion of our study is that allylphosphine behaves as a phosphorus base in the gas phase, even though the C(beta)-protonated structure is the most stable protonated species. We have also shown that both C(beta)- and C(gamma)-protonation triggers a cyclization of the system. An analysis of the bonding of the different protonated species as compared with that of the neutral system is presented.  相似文献   

2.
This letter focuses on the first result the preparation and its swelling behavior of a novel hybrid gelatin hydrogel with carbon nanotubes. A novel hybrid gelatin hydrogel with carbon nanotubes was synthesized by physical mixing method. The structure of the novel hydorgel obtained was characterized by SEM. Besides, the swelling behavior of the hydrogel synthesized was measured at different temperature. The results indicated that carbon nanotubes added could maintain the stability of the hybrid hydrogel at 37 °C. This suggests that the hybrid gelatin hydrogel with carbon nanotubes could be used in biomedical field. Besides, its application in protein concentrating has been discussed.  相似文献   

3.
The energetics and reaction mechanism of the migratory insertion of carbon monoxide and methyl isocyanide into the zirconium–carbon and titanium–carbon bonds in [calix[4](OMe)2(O)2M–Me2], (M=Zr, Ti), have been investigated by combining static and dynamic density functional calculations. Two steps have been characterized: the coordination of the incoming nucleophilic moiety leading to relatively stable facial adducts; its subsequent insertion into the M–C bond, leading to 2-bound acyl or iminoacyl complexes, providing a rationale for the different behavior of CO and MeNC towards both insertion and deinsertion reactions. Our results indicate that the rate-determining step for the overall MeNC insertion into the M–C bond is its coordination to the electron-deficient metal center, with the titanium system featuring a higher energy barrier (12.7 versus 5.5 kcal mol–1). Ab initio molecular dynamics simulations have been performed on the Zr system by means of the Car–Parrinello method, to study the hitherto inaccessible mechanistic features of the insertion reactions.Contribution to the Björn Roos Honorary Issue  相似文献   

4.
Palladium catalysts supported on a carbon–silica material were synthesized. Hydrogenation by molecular hydrogen was studied in the presence of straight-chain and cyclic olefins. As distinct from what is observed for olefins having a phenyl substituent, for aliphatic alkenes the reaction rate decreases with an increasing conversion due to the accumulation of hydrogenation products. The synthesized palladium catalysts show a higher hydrogenation activity than Pd/C.  相似文献   

5.
Thermodynamic parameters are determined for the adsorption of vapors of hydrocarbons and polar compounds of different structure on carbon adsorbent modified by a monomolecular layer of heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin. The effect of the structure and polarity of organic compounds on adsorption onto an adsorbent support with a chiral macrocyclic modifier are considered.  相似文献   

6.
The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we present a flexible Li–O2 cell using N-doped carbon nanocages grown onto the carbon textiles(NCNs/CTs)as a self-standing and binder-free O2 electrode.The highly flexible NCNs/CTs exhibits an excellent mechanic durability,a promising catalytic activity towards the ORR and OER,a considerable cyclability of more than 70 cycles with an overpotential of 0.36 V on the 1 stcycle at a constant current density of 0.2 m A/cm2,a good rate capability,a superior reversibility with formation and decomposition of desired Li2 O2,and a highly electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible LOBs.  相似文献   

7.
A carbon ceramic electrode (CCE) was fabricated from a composite consisting of sol-gel, ceramic graphite, multi-walled carbon nanotubes and the natural carotenoid crocin. The resulting sensor is shown to allow for the determination of NADH at a rather low working potential of 0.22 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant (ks) and the surface coverage of the modified electrode are 16.8 s?1 and 22 pmol·cm?2, respectively. The sensor shows excellent and linear response in solutions of pH 7.0 over the 0.5 to 100 μM NADH concentration range, a 0.1 μM detection limit, and a sensitivity of 251.3 nA·μM?1·cm?2.
Graphical abstract Schematic of the preparation of a carbon ceramic electrode modified with electropolymerized crocin on multi-walled carbon nanotubes. This sensor has a strongly decreased oxidation overpotential for NADH.
  相似文献   

8.
《Tetrahedron letters》1988,29(4):431-434
The title compound is photolyzed in methanol to give good yields (ca. 50%) of diphenylmethane indicating that the CC bond undergoes a formal heterolytic cleavage from the excited state as predicted from the measured redox potentials of the two ions.  相似文献   

9.
The calculated free energy barrier at 175 K between 1,3-dimethylcyclobutadiene and carbon dioxide inside a calixarene host (ωB97XD/6-311G(d,p)+polarizable continuum solvent model) has the low value of ~8-10.5 kcal mol(-1). This value casts doubt on the recently claimed isolation and X-ray structure determination at 175 K of 1,3-dimethylcyclobutadiene and carbon dioxide as separate species inside such a cavity.  相似文献   

10.
Covalent modification of shortened multiwalled carbon nanotubes (MWNTs) with a natural low molecular weight chitosan (LMCS) was accomplished by the nucleophilic substitution reaction. The LMCS modified MWNTs (MWNT-LMCS) were characterized by FTIR, solid-state 13C NMR, and XPS spectroscopies, thermogravimetric analysis, and transmission electron microscopy. The results revealed that amino and primary hydroxyl groups of the LMCS participated mainly in the formation of the MWNT-LMCS conjugates. The MWNT-LMCS consists of 58 wt.% LMCS, and about four molecular chains of the LMCS were attached to 1000 carbon atoms of the nanotube sidewalls. As a novel derivative of the MWNTs, the MWNT-LMCS not only solved in DMF, DMAc and DMSO, but also in aqueous acetic acid solution.  相似文献   

11.
As coal is expected to continue to dominate power generation demands worldwide, it is advisable to pursue the development of more efficient coal power generation technologies. Fuel cells show a much higher fuel utilization efficiency, emit fewer pollutants (NO x , SO x ), and are more easily combined with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and reaction products. The use of an external gasifier and a fuel cell operating on syngas (e.g. integrated gasification fuel cells) is briefly discussed for comparative purposes. A wide array of DCFC types have been investigated over the last 20 years. Here, the diversity of pre-commercialization DCFC research efforts is discussed on the fuel cell stack and system levels. The range of DCFC types can be roughly broken down into four fuel cell types: aqueous hydroxide, molten hydroxide, molten carbonate and solid oxide fuel cells. Emphasis is placed on the electrochemical reactions occurring at the anode and the proposed mechanism(s) of these reactions for molten carbonate, solid oxide and hybrid direct carbon fuel cells. Additionally, the criteria of choosing the ‘best’ DCFC technology is explored, including system design (continuous supply of solid fuel), performance (power density, efficiency), environmental burden (fresh water consumed, solid waste produced, CO2 emitted, ease of combination with CCS) and economics (levelized cost of electricity).  相似文献   

12.
The data on adsorption of cyclopentane, benzene, and their mixture on active carbon were analyzed by the statistical thermodynamic model. A method to describe the state of a binary mixture in single micropores was offered. A substantial negative deviation from Raoult's law predicted by the concept of an ideal adsorption solution is a consequence of a decrease in the excessive Helmholtz energy brought about by progressive filling when values of the excessive energy are positive over a wide range of adsorption. The excessive values found for the entropy and internal energy of a mixture of molecules in a single micropore are negative due to the heterogeneity of the adsorption field. The approach suggested adequately describes the experimental data and can be used for the determination of differential heats of adsorption. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1070–1076, June, 1999.  相似文献   

13.
Searching for stable sulfur–carbon triply bonded molecules has been of great interest from both the fundamental and applied viewpoints. The known polyatomic sulfur–carbon triply bonded molecules are usually not the global minima. Here, we report a potential energy surface investigation of a tetra-atomic molecule [S,C,B,O] in both doublet and quartet states. The B3LYP and M06-2X methodologies with 6-311+G(3df,2p) and aug-cc-pVTZ basis sets were applied for geometrical optimization and CCSD(T)/aug-cc-pVTZ for single-point energy calculations. The thermodynamically most stable isomer is the linear SCBO 01 (0.0 kcal/mol). Kinetically, SCBO 01 is separated from the other isomers and fragments by the rather high barriers of at least 44.7 kcal/mol. In particular, isomer SCBO 01 contains a typical carbon–sulfur triple bond based on the systematic analysis from the structure, vibrational frequency, molecular orbital, Wiberg bond index, and adiabatic bond dissociation energy. In addition, there exists a second low-lying isomer, i.e., linear SBCO 02 (7.3 kcal/mol) with S≡B triple bonding, whose kinetic stability is governed by its fragmentation to 2SB+1CO (30.4 kcal/mol). The remaining isomers are either kinetically unstable with low conversion barriers or energetically very high lying. We propose that the simple two-body association between SC and BO, SB and CO pairs can preferentially lead to the formation and stabilization of SCBO 01 and SBCO 02, respectively. The isomer SCBO 01, which is the global structure and extraordinarily stable against both isomerization and fragmentation, strongly deserves future laboratory studies.  相似文献   

14.
Conjugate additions of carbon nucleophiles to appropriate acceptor molecules were investigated with respect to the synthetic potential and stereochemistry of the products. Reactions of short-chain α,β-unsaturated ketones and mono-substituted nitroalkenes with CH-acidic carboxylic ester derivatives were catalyzed by various immobilized lipases. Using methyl nitroacetate complete conversion with methyl vinyl ketone and trans-β-nitrostyrene was obtained. The reactions proceeded without enantioselectivity. Evidence for enzyme catalysis is provided by the observation that after denaturation of Candida antarctica lipase B or inhibition no reaction took place. Docking studies with the chiral addition product methyl 2-methyl-2-nitro-5-oxohexanoate did not reveal any specific binding mode for this reaction product, which would have been the requirement for stereoselective additions. These results support the experimental findings that the conjugate addition takes place without enantiopreference.  相似文献   

15.
The electrochemical oxidation of guanosine-5??-monophosphate (GMP) was studied with a glassy carbon electrode modified with a composite made from graphene and multi-walled carbon nanotubes. GMP undergoes an irreversible oxidation process at an oxidation peak potential of 987?mV in phosphate buffer solution. Compared to other electrodes, the oxidation peak current of GMP with this electrode was significantly increased, and the corresponding oxidation peak potential negatively shifted, thereby indicating that the modified material exhibited electrochemical catalytic activity towards GMP. Chronocoulometry demonstrates that the material also effectively increases the surface area of the electrode and increases the amount of GMP adsorbed. Under the optimum conditions, the oxidation current is proportional to the GMP concentration in the range from 0.1 to 59.7???M with a correlation coefficient of 0.9991. The detection limit is 0.025???M (at S/N?=?3).
Figure
We have developed an electrochemical method for sensitive determination of guanosine-5??-monophosphate (1) based on graphene and multi-walled carbon nanotubes modified glassy carbon electrode by amperometry.  相似文献   

16.
Multi-walled carbon nanotube (MWCNT) is successfully immobilized on the surface of platinum electrode by mixing with DNA. The DNA/MWCNT modified electrodes are characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Further research indicates that cytochrome c can strongly adsorbed on the surface of the modified electrode, and forms an approximate monolayer. The immobilized MWCNT can promote the redox of horse heart cytochrome c which gives reversible redox peaks with a formal potential of 81 mV vs SCE.  相似文献   

17.
Two novel heterogeneous nickel ?-diimine based polymerization catalysts, containing MWCNT as the main ligand, were synthesized by novel in situ catalyst preparation technique. The in situ synthesis was performed by covalent attachment of the acenaphthenic ligand core to amine functionalized MWCNT ligand arms through diimine bonding and further nickel dibromide chelation. The prepared catalysts were fully characterized and their structures and supporting efficiencies were determined. Single or double introduction of the MWCNTs through their ends or sidewall(s) in the catalytic system, as a ligand, influenced the catalytic performance, microstructure and morphology of obtained polyethylenes. MWCNT sidewall bonding to para-aryl position of the tetramethylphenyl moiety performed as more electron-donating ligand than MWCNT ends linked to the imine bond and protected the catalytic system to retain its activity. This character resulted in the maintenance of the resulting polymer topology at elevated temperatures so that the catalytic activity and the obtained polymer melting points remained around 110 g PE?mmol?1 Ni?h?1 and 123 ℃ in all polymerization temperatures respectively. In polymerization trials, molecular weight fall against temperature was not as sharp as what had been observed in sequentially prepared catalysts insofar as the molecular weight of resultant polymer at 60 ℃ reached to 310000 g?mol?1 which was close to the highest value had been reported at 30 ℃ for sequentially prepared catalysts. TEM observations showed the presence of the stopped-growth polymer chains due to geometrical constrains or ligand debonding for both catalytic systems.  相似文献   

18.
Metal-matrix composites are made of materials with different physical and chemical properties. It is possible to change the mechanical, thermal and electrical properties by variation of the mass ratio of the components; therefore, metal-matrix composites have great value for industrial and technological applications. Copper–carbon composites have a good chance to be used as heat sinks for electronic components, which can be explained by their high thermal conductivity, low density and an adjustable coefficient of thermal expansion. On the other hand, the mechanical adhesion of copper and carbon is extremely weak because of their immiscibility and weak chemical interactions. In order to compensate for the low wettability of carbon by copper, a thin molybdenum intermediate layer is used as an adhesion promoter. In this work a time of flight secondary ion mass spectrometry technique was primarily used to detect the carbide formation in the molybdenum and copper layers, depending on different temperature conditions during sputter deposition and annealing afterwards. The CuMo layers were deposited by magnetron sputtering. The adhesion of the samples was determined by a destructive pull-off test. We found that heat treatment mainly modifies the carbide formation in the molybdenum and copper layers.  相似文献   

19.
20.
We investigate the conditions when noble-gas hydrides can be found in real environments and report on the preparation and identification of the HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix. The H-Xe stretching mode of the HXeBr···CO(2) complex in a xenon matrix is observed at 1557 cm(-1), showing a spectral shift of +53 cm(-1) from the HXeBr monomer. The calculations at the CCSD(T)/aug-cc-pVTZ-PP(Xe,Br) level of theory give two stable structures for the HXeBr···CO(2) complex with frequency shifts of +55 and +103 cm(-1), respectively. On the basis of the calculations, the experimentally observed band is assigned to the more stable structure with a "parallel" geometry. The HXeBr molecule was prepared in a carbon dioxide matrix and has the H-Xe stretching frequency of 1646 cm(-1), meaning a strong matrix shift and stabilization of the H-Xe bond. The deuterated species DXeBr in a carbon dioxide matrix absorbs at 1200 cm(-1). This is the first case where a noble-gas hydride is prepared in a molecular solid. The thermal stabilities of HXeBr and HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix were examined. We have found a high thermal stability of HXeBr in carbon dioxide ice (at least up to 100 K), i.e., under conditions that may occur in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号