共查询到20条相似文献,搜索用时 23 毫秒
1.
S. Y. Yang S. Zhang B. L. Fu Q. Wu F. L. Liu C. Deng 《Journal of Solid State Electrochemistry》2011,15(11-12):2633-2638
A series of Cr-doped Li3V2???x Cr x (PO4)3 (x?=?0, 0.1, 0.25, and 0.5) samples are prepared by a sol–gel method. The effects of Cr doping on the physical and chemical characteristics of Li3V2(PO4)3 are investigated. Compared with the XRD pattern of the undoped sample, the XRD patterns of the Cr-doped samples have no extra reflections, which indicates that Cr enters the structure of Li3V2(PO4)3. As indicated by the charge–discharge measurements, the Cr-doped Li3V2???x Cr x (PO4)3 (x?=?0.1, 0.25, and 0.5) samples exhibit lower initial capacities than the undoped sample at the 0.2 C rate. However, both the discharge capacity and cycling performance at high rates (e.g., 1 and 2 C) are enhanced with proper amount of Cr doping (x?=?0.1). The highest discharge capacity and capacity retention at the rates of 1 and 2 C are obtained for Li3V1.9Cr0.1(PO4)3. The improvement of the electrochemical performance can be attributed to the higher crystal stability and smaller particle size induced by Cr doping. 相似文献
2.
Cunliang Zhang Nie Ping Laifa Shen Hongshen Li Gang Pang Xiaogang Zhang 《Journal of Solid State Electrochemistry》2016,20(7):1983-1990
The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide (LVP/N-RGO) composite was prepared by a facile one-pot hydrothermal method and evaluated as cathode material for lithium-ion batteries. It is clearly seen that the novel porous structure of the as-prepared LVP/N-RGO significantly facilitates electron transfer and lithium-ion diffusion, as well as markedly restrains the agglomeration of Li3V2(PO4)3 (LVP) nanoparticles. The introduction of N atom also has positive influence on the conductivity of RGO, which improves the kinetics of electrochemical reaction during the charge and discharge cycles. It can be found that the resultant LVP/N-RGO composite exhibits superior rate properties (92 mA h g?1 at 30 C) and outstanding cycle performance (122 mA h g?1 after 300 cycles at 5 C), indicating that nitrogen-doped RGO could be used to improve the electrochemical properties of LVP cathodes for high-power lithium-ion battery application. 相似文献
3.
Xin Zhang Suqin Liu Kelong Huang Shuxin Zhuang Jun Guo Tao Wu Ping Cheng 《Journal of Solid State Electrochemistry》2012,16(3):937-944
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron
microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure
and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical
performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was
verfied by cyclic voltammetry and electrochemical impedance spectroscopy. 相似文献
4.
Xiaoyu Liu Xuejiao Feng Xiaoning Xu Fei Wang Yanming Wang 《Journal of Sol-Gel Science and Technology》2018,86(2):343-350
Herein, porous Li3V2(PO4)3/C microspheres made of nanoparticles are obtained by a combination of sol spray-drying and subsequent-sintering process. Beta-cyclodextrin serves as a special chelating agent and carbon source to obtain carbon-coated Li3V2(PO4)3 grains with the size of ca. 30–50?nm. The unique porous structure and continuous carbon skeleton facilitate the fast transport of lithium ion and electron. The Li3V2(PO4)3/C microspheres offer an outstanding electrochemical performance, which present a discharge capacity of 122?mAh?g?1 at 2?C with capacity retention of 96% at the end of 1000 cycles and a high-rate capacity of 113?mAh?g?1 at 20?C in the voltage window of 3.0–4.3?V. Moreover, the Li3V2(PO4)3/C microspheres also give considerable cycling stability and high-rate reversible capacity at a higher end-of-charge voltage of 4.8?V. 相似文献
5.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials. 相似文献
6.
M. M. El-Desoky A. M. Al-Syadi M. S. Al-Assiri Hassan M. A. Hassan Gaber El Enany 《Journal of Solid State Electrochemistry》2016,20(10):2663-2671
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices. 相似文献
7.
Xinghao Lin Youzhong Dong Quan Kuang Danlin Yan Xudong Liu Wei Han Yanming Zhao 《Journal of Solid State Electrochemistry》2016,20(5):1241-1250
A new Co-base sodium metaphosphate compound, NaCo(PO3)3, has been synthesized here by solid-state method. The crystal structure is refined by the Rietveld method, and the results reveal that NaCo(PO3)3 has an orthorhombic structure with the space group of P2 1 2 1 2 1 and lattice parameters of a = 14.2453(2) Å, b = 14.2306(1) Å, and c = 14.2603(2) Å. Its typical morphology and chemical composition are confirmed by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The valence states of all elements and the internal/external vibrational modes of NaCoP3O9 compound are measured by X-ray photoelectron and vibrational spectrum, where a typical feature of the (PO3)? polyanion group is observed. Meanwhile, the electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries are also elevated and an initial discharge capacity of 33.8 mAh/g can be obtained at 0.05 C within 1.5–4.2 V. After 20 cycles, a discharge capacity of 26.7 mAh/g can be obtained and a well-kept oxidation–reduction plateau is still observed for NaCo(PO3)3 cathode, indicating the good reversibility of this metaphosphate electrode. 相似文献
8.
Y. Takeuchi T. Yamashita K. Kuriyama K. Kushida 《Journal of Solid State Electrochemistry》2016,20(7):1885-1888
Li5SiN3 crystals are synthesized by direct reaction between Li3N and Si3N4 with the molar ratio Li3N/Si3N4 of 10:1. Reaction is performed at 1073 K for 1 h under a nitrogen atmosphere of 700 Torr. The lattice constant determined by the X-ray powder diffraction method is 4.718 Å. Four broad Raman peaks are observed at 196, 286, 580, and 750 cm?1. By analogy with LiMgN, the broad peak at 580 cm?1 with a half width of 140 cm?1 is attributed to homogenously random distribution of Li and Si atoms. The band gap of Li5SiN3 is found to be a direct gap of about 2.5 eV by optical absorption and photoacoustic spectroscopy methods. Comparison with the conventional cathode materials for lithium ion batteries, this gap value is close to d-d transition energy of Mn in LiMn2O4 (1.63 eV or 2.00 eV) and that of Co in LiCoO2 (2.1 eV), suggesting that Li5SiN3 is a possible cathode material. The 5 × 5 mm2-sized lithium secondary battery of Li5SiN3 cathode/propylene carbonate + LiClO4 electrolyte/Li anode structure shows a discharge capacity of 2.4 μAh cm?2 for a discharge current of 1.0 μA. 相似文献
9.
Shifeng Li Jiangdong Guo Qianli Ma Ying Yang Xiangting Dong Ming Yang Wensheng Yu Jinxian Wang Guixia Liu 《Journal of Solid State Electrochemistry》2017,21(10):2779-2790
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries. 相似文献
10.
Yuanyuan Zhang Qianqian Liang Cheng Huang Ping Gao Hongbo Shu Xiaoyan Zhang Xiukang Yang Li Liu Xianyou Wang 《Journal of Solid State Electrochemistry》2018,22(7):1995-2002
Tavorite-structured lithium transition metal fluorophosphates have been considered as a good alternative to olivine-type cathode for lithium-ion batteries due to its exceptional ionic conductivity and excellent thermal stability. In this work, nearly monodisperse LiFePO4F nanospheres with high purity are successfully synthesized by a solid-state route associated with chemically induced precipitation method for the first time. The synthesized LiFePO4F presents nearly monodisperse nanospheres particles with average particle size of ~?500 nm. Cyclic voltammetry data exhibit a clear indication of the Fe3+/Fe2+ redox couple that involves a two-phase transition. Its electrochemical behaviors are examined by galvanostatic charge-discharge. The results show that the initial discharge capacity is 110.2 mAh g?1 at 0.5 C, after 200 cycles is still retained 104.0 mAh g?1 with the retention rate of 94.4%. The excellent cycle performance is mainly attributed to the uniform nanospheres-like morphology which is not only beneficial to shorten the transport distance of ions and electrons, but also improve the interface area between electrode and electrolyte, and thus improve the kinetics of Li ions. 相似文献
11.
Guan Wang Yan Cheng Manming Yan Zhiyu Jiang 《Journal of Solid State Electrochemistry》2007,11(4):457-462
Three kinds of LiFePO4 materials, mixed with carbon (as LiFePO4/C), doped with Ti (as Li0.99Ti0.01FePO4), and treated both ways (as Li0.99Ti0.01FePO4/C composite), were synthesized via ball milling by solid-state reaction method. The crystal structure and electrochemical
behavior of the materials were investigated using X-ray diffraction, SEM, TEM, cyclic voltammetry, and charge/discharge cycle
measurements. It was found that the electrochemical behavior of LiFePO4 could be increased by carbon coating and Ti-doping methods. Among the materials, Li0.99Ti0.01FePO4/C composite presents the best electrochemical behavior, with an initial discharge capacity of 154.5 mAh/g at a discharge
rate of 0.2 C, and long charge/discharge cycle life. After 120 cycles, its capacity remains at 92% of the initial capacity.
The Li0.99Ti0.01FePO4/C composite developed here can be used as the cathode material for lithium ion batteries. 相似文献
12.
O. V. Sinitsyna A. G. Veresov E. S. Kovaleva Yu. V. Kolen’ko V. I. Putlyaev Yu. D. Tretyakov 《Russian Chemical Bulletin》2005,54(1):79-86
Conditions for hydroxyapatite (HAP) synthesis in aqueous solutions by hydrolysis of α-Ca3(PO4)2 were studied. Temperature exerts a substantial effect on the rate of α-Ca3(PO4)2 hydrolysis and also changes the morphology of the reaction products. At 40 °C, the plate-like intersecting (perpendicular to the surface of the initial particles) crystals of HAP grow. Their maximum size after the 24-h hydrolysis is 1–2 µm. Needle like HAP crystals are formed upon boiling of the suspension. The morphology observed for the HAP particles agrees well with the conclusions obtained by analysis of the kinetics of tricalcium phosphate hydrolysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 78–85, January, 2005. 相似文献
13.
Yindan Liu Guohua Gao Xing Liang Guangming Wu 《Journal of Solid State Electrochemistry》2018,22(8):2385-2393
Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g?1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g?1 after 50 cycles), and good rate performance (~?150 mAh g?1 at 2 A g?1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable. 相似文献
14.
Phosphates M0.5Ti2(PO4)3 (M = Ni, Zn) were synthesized by the sol-gel method and characterized by the methods of X-ray diffraction, IR spectroscopy, and electronic microprobe analysis. Structures of Ni0.5Ti2(PO4)3 and Zn0.5Ti2(PO4)3 were studied by Rietveld method using the X-ray powder diffraction data. 相似文献
15.
Lin Zhou Jing Liu Lisi Huang Na Jiang Qiaoji Zheng Dunmin Lin 《Journal of Solid State Electrochemistry》2017,21(12):3467-3477
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials. 相似文献
16.
A. A. Popovich M. Yu. Maximov A. O. Silin P. A. Novikov Yu. M. Koshtyal A. M. Rumyantsev 《Russian Journal of Applied Chemistry》2016,89(10):1607-1611
Lithium-riched cathode material for lithium-ion batteries, Li1.17Ni0.12Co0.13Mn0.58O2, was synthesized via crystallization from a solution of metal acetates, followed by a thermal treatment of the material obtained as a powder. The phase, elemental, and granulometric compositions of the material were examined, as well as the morphology of the powder particles obtained. The discharge capacity of the material in relation to the charging voltage was found from the results of electrochemical tests, and endurance tests were performed. The discharge capacity upon 85 charge/discharge cycles at voltages in the range 2.8–4.8 and a current of 0.1C was about 180 mA h g–1. 相似文献
17.
V. I. Pet’kov I. A. Shchelokov M. D. Surazhskaya K. K. Palkina A. S. Kanishcheva A. V. Knyazev 《Russian Journal of Inorganic Chemistry》2010,55(9):1352-1355
Double phosphate Ba1.5Fe2(PO4)3 was synthesized and structurally studied. Single crystals were synthesized by the fusion method. Cubic crystals, Z = 4, space group P213, a = 9.866(1) Å. This structure is built of polyhedrons of four types: PO4 tetrahedrons, two virtually regular FeO6 octahedrons, BaO12 twelve-vertex polyhedrons, and BaO9 nine-vertex polyhedrons. These polyhedrons share common oxygen vertices to form three-dimensional [Fe2(PO4)3]3∞ framework containing barium atoms in cavities. 相似文献
18.
Mohammed Adnan Mezaal Limin Qu Guanghua Li Wei Liu Xiaoyuan Zhao Ke Zhang Rui Zhang Lixu Lei 《Journal of Solid State Electrochemistry》2017,21(1):145-152
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density. 相似文献
19.
V. I. Pet’kov A. S. Dmitrienko M. V. Sukhanov A. M. Koval’skii E. Yu. Borovikova 《Russian Journal of Inorganic Chemistry》2016,61(5):623-629
The NaFeZr(PO4)2SO4 and Pb2/3FeZr(PO4)7/3(SO4)2/3 sulfate phosphates with the NaZr2(PO4)3 (NZP) structure were synthesized and studied using X-ray diffraction, electron microprobe analysis, IR spectroscopy, and simultaneous differential thermal and thermogravimetric analysis. The phase formation and thermal stability of the compounds were studied by powder X-ray diffraction and DTA–TG. The Pb2/3FeZr(PO4)7/3(SO4)2/3 structure was refined by full-profile analysis. The structure framework is composed of randomly occupied (Fe,Zr)O6 octahedra and (P,S)O4 tetrahedra; the Pb2+ ions occupy extra-framework sites. The thermal expansion of Pb2/3FeZr(PO4)7/3(SO4)2/3 in the temperature range from–120 to 200°C was studied by temperature X-ray diffraction. In terms of the average linear coefficient of thermal expansion (αav = 1.7 × 10–6°C–1), this compound can be classified as having low expansion. The combination of different tetrahedral anions (a phosphorus and a smaller sulfur one) in the NZP resulted in a decrease in the framework size and cavities and enabled the preparation of low-expansion sulfate phosphate with a smaller extra-framework cation (cheap Pb) instead of larger cations (Cs, Ba, Sr) used most often in the monoanionic phosphates. 相似文献
20.
A. R. Zaripov V. A. Orlova V. I. Pet’kov O. M. Slyunchev D. D. Galuzin S. I. Rovnyi 《Russian Journal of Inorganic Chemistry》2009,54(1):45-51
The new phosphate Cs2Mn0.5Zr1.5(PO4)3 was synthesized for the first time and characterized by X-ray diffraction. Its crystal structure was refined in space group P213, Z = 4 at 25°C (a = 10.3163(1) Å, V = 1097.93(1) Å3), by the Rietveld method using the powder X-ray diffraction data. The structure is built of an octahedral-tetrahedral framework {[Mn0.5Zr1.5(PO4)3]2?}3∞ with cesium atoms being located in large cavities. The hydrolytic stability of the powdered phosphate containing 137Cs radionuclide was studied. The minimum achieved 137Cs leaching rate was 4 × 10?8 g/cm2 day. 相似文献