首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced graphene oxide/sulfur/polyaniline (referred to RGO/S/PANI) composite was self-assembled through in situ synthesis and used to investigate the electrochemical properties of lithium/sulfur cells. The RGO/S/PANI composite possessed 809.3/801.9 mAh g?1 of initial charge/discharge capacities, higher than 588.3/588.2 mAh g?1 for reduced graphene oxide/sulfur (referred to RGO/S) and 681.4/669.9 mAh g?1 for sulfur/polyaniline (referred to S/PANI) at similar conditions. The RGO/S/PANI composite obtained 400 mAh g?1 at 2 C and good reversible capacities of 605.5 and 600.8 mAh g?1 at 100th charge/discharge cycle at 0.1 C, in comparison with low electrochemical performance of RGO/S and S/PANI. The improved properties could be attributed to the collaboration of RGO and PANI. Co-generation of RGO and sulfur acted as seeds for their depositions, stimulated their uniform distributions, and restricted the agglomeration of sulfur particles in situ synthesis. Polyaniline coated RGO/S and stabilized the nanostructure of RGO/S/PANI in repeated charge/discharge cycles. In addition, RGO and PANI provided many electron channels to enhance sulfur conductivity and sufficient void space for sulfur swelling during charge/discharge cycles.  相似文献   

2.
A facile strategy was developed to prepare interlayer-expanded MoS2/graphene composites through a one-step hydrothermal reaction method. MoS2 nanosheets with several-layer thickness were observed to uniformly grow on the surface of graphene sheets. And the interlayer spacing of MoS2 in the composites was determined to expand to 0.95 nm by ammonium ions intercalation. The MoS2/graphene composites show excellent lithium storage performance as anode materials for Li-ion batteries. Through gathering advantages including expanded interlayers, several-layer thickness, and composited graphene, the composites exhibit reversible capacity of 1030.6 mAh g?1 at the current density of 100 mA g?1 and still retain a high specific capacity of 725.7 mAh g?1 at a higher current density of 1000 mA g?1 after 50 cycles.  相似文献   

3.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

4.
We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g?1 and volumetric capacity of 123 mAh cm?3 at a scan rate 5 mV s?1 in comparison to 62.0 mAh g?1 and 113 mAh cm?3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles.  相似文献   

5.
Mesoporous carbons (MCs) were used as the matrixes to load sulfur for lithium sulfur (Li-S) batteries, and pore sizes were tuned by heat treatment at different high temperatures. The cathode material shows the highest discharge capacity of 1158.2 mAh g?1 at the pore size of 4.1 nm among as-prepared nitrogen-free materials with different sizes. Meanwhile, the nitrogen doping of mesoporous carbon helps to inhibit the diffusion of polysulfide species via an enhanced surface adsorption. The carbon/sulfur containing N (4.56%) shows a high initial discharge capacity of 1315.8 mAh g?1 and retains about 939 mAh g?1 after 100 cycles at 0.2 C. The improved electrochemical performance is ascribed to the proper pore size, surface chemical property, and conductivity of the N-doped carbon material.  相似文献   

6.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

7.
Few-layered graphene (FLG) with specific surface area of only ~8.2 m2 g?1 was synthesized from graphene oxide (GO) using microwave-assisted exfoliation. GO was prepared using modified Hummers method. Few-layered nature of the exfoliated material was confirmed by electron microscopy, X-ray and electron diffraction, and Raman spectroscopy. Coin cells were fabricated using FLG as an anode and lithium metal as a counter electrode. The cells were tested using cyclic voltammetry and galvanostatic cycling techniques. FLG showed reversible capacity values of ~400 and ~250 mAh g?1 at current rates of 0.1 and 1 C, respectively. Columbic efficiency was more than 98 % while cycle to cycle capacity fading was less than 2 %. Maximum discharge or charging capacity was below 0.3 V, a preferable characteristic for achieving ideal anodic behavior.  相似文献   

8.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

9.
Hierarchical SnO2 with double carbon coating (polypyrrole-derived carbon and reduced graphene oxide in order) composites have been successfully synthesized as anode materials for lithium ion batteries. The composites were characterized and examined by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, cyclic voltammetry, and galvanostatic discharge/charge tests. Such a novel nanostructure can not only provide a high conductivity but also prevent aggregation of SnO2 nanoparticles, leading to the improvement of the cycling performance. Comparing with pure hierarchical SnO2 and polypyrrole-derived carbon-coated hierarchical SnO2, hierarchical SnO2 with double carbon coating composite exhibits higher lithium storage capacities and better cycling performance, 554.8 mAh g?1 after 50 cycles at a current density of 250 mA g?1. In addition, the rate performance of hierarchical SnO2 with double carbon coating composite is also very well. For all the improved performances, this double carbon coating architecture may provide some references for other electrode materials of lithium ion batteries.  相似文献   

10.
Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. The shape, size, and morphology of Zn ferrite are investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Furthermore, the probable bubble-assisted formation mechanism of porous hollow Zn ferrite spheres based on the experimental results is proposed. With the porous hollow structure, the obtained pure Zn ferrite particle as an anode in lithium ion battery demonstrates high capacity and excellent cycle ability. The high initial discharge specific capacity is approximately 1,400 mAh g?1 and a reversible specific capacity approaches 584 mAh g?1 after 100 cycles at a constant current density of 100 mA g?1. The excellent electrochemical performance of the as-prepared Zn ferrite could be attributed to the special structure with which the volume expansion and pulverization of the particles became increasingly reduced.  相似文献   

11.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

12.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

13.
Glucose-derived activated carbon (GAC)/reduced graphene oxide (RGO) composites are prepared by pre-carbonization of the precursors (aqueous mixture of glucose and graphene oxide) and KOH activation of the pyrolysis products. The effect of the mass ratio of graphene oxide (GO) in the precursor on the electrochemical performance of GAC/RGO composites as electrode materials for electrochemical capacitors is investigated. It is found that the thermally reduced graphene oxide sheets serves as a wrinkled carrier to support the activated carbon particles after activation. The pore size distribution and surface area are depended on the mass ratio of GO. Besides, the rate capability of GAC is improved by the introduction of GO in the precursor. The highest specific capacitance of 334 F g?1 is achieved for the GAC/RGO composite prepared from the precursor with a GO mass ratio of 3 %.  相似文献   

14.
The SnO2 sheet/graphite composite was synthesized by a hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD and FE-SEM. The electrochemical performance of SnO2 sheet/graphite composite was measured by galvanostatic charge/discharge cycling and EIS. The first discharge and charge capacities are 1,072 and 735 mAh g?1 with coulombic efficiency of 68.6 %. After 40 cycles, the reversible discharge capacity is still maintained at 477 mAh g?1. The results show that the SnO2 sheet/graphite composite displays superior Li-battery performance with large reversible capacity and good cyclic performance.  相似文献   

15.
A spherical porous carbon (SPC) with high specific surface area is prepared by spray pyrolysis at 800 °C followed by removing silica template. The prepared SPC is employed as a conductive matrix in the sulfur cathode (S-SPC) for lithium–sulfur secondary batteries. The BET surface area of the prepared SPC sample is as high as 1,133 m2 g?1 and the total pore volume is 2.75 cm3 g?1. The electrochemical evaluations including charge–discharge tests, cyclic voltammograms (CV), and electrochemical impedance spectrum suggest that the prepared S-SPC composite presents superior electrochemical stability when compared to the S-SP cathode. The as-prepared S-SPC composite shows improved cycle performance. The reversible discharge capacity is about 637 mAh g?1 after 50 cycles, which is much better than that of the as-prepared sulfur–Super P carbon black composite. It may be attributed to the high porosity and excellent conductive structure of the SPC.  相似文献   

16.
Thiourea aldehyde resin-based heteroatom doping carbon and graphene composites (RHDC/GN) were prepared by an in situ polymerization and carbonization. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that thiourea aldehyde resin deposited on lamellar GO flakes during the polymerization and RHDC/GN composites had a hierarchical structure. The specific capacitance of the RHDC/GN composites was high up to 355 F g?1, much higher than that of the pure thiourea aldehyde resin-based heteroatom doping carbon (RHDC) with specific capacitance of 135 F g?1 at a current density of 1.0 A g?1 in 6-M KOH electrolyte. And the hetroatoms in RHDC/GN composites increase the specific capacitance, and GN enhances the conductivity of the electrodes which is beneficial to improving electrochemical cycling stability of the electrode significantly. The specific capacitance retains 90.97% after 5000 charge-discharge processes at 10 A g?1, which provides potential as supercapacitors.  相似文献   

17.
In this report, a porous, electronically conductive nickel foam foil (NFF), which is rolled for smooth surface, is introduced as an interlayer placed between the sulfur electrode and the separator to suppress the loss of active material and self-discharge behavior in lithium–sulfur (Li–S) systems. The electrodes are characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge test. The cell with the rolled NFF interlayer shows superior performance in terms of capacity utilization, reversibility, and enhanced rate capability. It exhibits reversible discharge capacity of 604 mAh g?1 after 80 cycles at 0.2 C, which is much higher than that of pristine sulfur without NFF (424 mAh g?1). The improvement on electrochemical performance is attributed to the 3D architecture of nickel foam foil as lithium–sulfur batteries interlayer, which can provide a good conductive network with structural stability and the porous architecture accommodating the migrating polysulfide to reduce the shuttling phenomenon during the charge–discharge processes.  相似文献   

18.
In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g?1 after 1000 cycles with a low average fading capacity of 0.15 mAh g?1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g?1 is remained at the current densities of 10.0 A g?1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.  相似文献   

19.
Tin oxide (SnO2)/graphene composite was synthesized from SnCl2?·?2H2O and graphene oxide (GO) by a wet chemical-hydrothermal route. The GO was reduced to graphene nanosheet (GNS) and flower-like SnO2 nano-crystals with size about 40 nm were homogeneously distributed on the surface of GNS. The SnO2/graphene composites delivered a superior first discharge capacity of 1941.9 mAhg?1 with a reversible capacity of 901.7 mAhg?1 at the current density of 100 mAg?1. Moreover, even at higher densities of 200 and 500 mAg?1, the SnO2/graphene composite still maintained enhanced cycling stability. After 40 cycles, the discharge capacity was still maintained at 691.1 mAhg?1 at the current density of 100 mAg?1. The SnO2/graphene composite displayed an outstanding Li-battery performance with large reversible capacity and enhanced rate performance, which can be attributed to the highly uniform distribution of SnO2 nanoparticles and high reduction degree of graphene. This result strongly indicates that the SnO2/graphene composite was a promising anode material in high-performance lithium-ion batteries.  相似文献   

20.
Polyaniline encapsulated silicon (Si/PANI) nanocomposite as anode materials for high-capacity lithium ion batteries has been prepared by an in situ chemical polymerization of aniline monomer in the suspension of Si nanoparticles. The obtained Si/PANI nanocomposite demonstrates a reversible specific capacity of 840 mAh g?1 after 100 cycles at a rate of 100 mA g?1 and excellent cycling stability. The enhanced electrochemical performance can be due to that the polyaniline (PANI) matrix offers a continuous electrically conductive network as well as enhances the compatibility of electrode materials and electrolyte as a result of suppressing volume stress of Si during cycles and preventing the agglomeration of Si nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号