首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.  相似文献   

2.
This paper concerns the number and distributions of limit cycles in a Z_2-equivariant quintic planar vector field.25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation.It can be concluded that H(5)≥25=5~2, where H(5)is the Hilbert number for quintic polynomial systems.The results obtained are useful to study the weakened 16th Hilbert problem.  相似文献   

3.
A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ⩾ (2k + I)2 - 1 for the perturbed Hamiltonian systems.  相似文献   

4.
On the number of limit cycles in double homoclinic bifurcations   总被引:7,自引:0,他引:7  
LetL be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under whichL generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear nearL under perturbations.  相似文献   

5.
6.
In this paper,we consider Li′enard systems of the form dx/dt=y,dy/dt=x+bx3-x5+ε(α+βx2+γx4)y,where b∈R,0|ε|1,(α,β,γ)∈D∈R3 and D is bounded.We prove that for |b|1(b0) the least upper bound of the number of isolated zeros of the related Abelian integrals I(h)=∮Γh(α+βx2+γx4)ydx is 2(counting the multiplicity) and this upper bound is a sharp one.  相似文献   

7.
We construct a planar cubic system and demonstrate that it has at least 13 limit cycles. The construction is essentially based on counting the number of zeros of some Abelian integrals.  相似文献   

8.
Using qualitative analysis and numerical simulation, we investigate the number and distribution of limit cycles for a cubic Hamiltonian system with nine different seven-order perturbed terms. It is showed that these perturbed systems have the same distribution of limit cycles. Furthermore, these systems have 13, 11 and 9 limit cycles for some parameters, respectively. The accurate positions of the 13, 11 and 9 limit cycles are obtained by numerical exploration, respectively. Our results imply that these perturbed systems are equivalent in the sense of distribution of limit cycles. This is useful for studying limit cycles of perturbed systems.  相似文献   

9.
A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ≥ (2k + 1)2 - 1 for the perturbed Hamiltonian systems.  相似文献   

10.
In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 12 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 12 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems, the result of Jiang et al. (2009) [18] was improved.  相似文献   

11.
In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By computing the Liapunov constants and periodic constants carefully, we show that for a certain Z4-equivariant quintic systems, there are four fine focuses of five order and five limit cycles can bifurcate from each, we also find conditions of center and isochronous center for this system. The process of proof is algebraic and symbolic by using common computer algebra soft such as Mathematica, the expressions after being simplified in this paper are simple relatively. Moreover, what is worth mentioning is that the result of 20 small limit cycles bifurcating from several fine focuses is good for Z4-equivariant quintic system and the results where multiple singular points become isochronous centers at the same time are less in published references.  相似文献   

12.
This paper is concerned with the practical complexity of the symbolic computation of limit cycles associated with Hilbert’s 16th problem. In particular, in determining the number of small-amplitude limit cycles of a non-linear dynamical system, one often faces computing the focus values of Hopf-type critical points and solving lengthy coupled polynomial equations. These computations must be carried out through symbolic computation with the aid of a computer algebra system such as Maple or Mathematica, and thus usually gives rise to very large algebraic expressions. In this paper, efficient computations for the focus values and polynomial equations are discussed, showing how to deal with the complexity in the computation of non-linear dynamical systems.  相似文献   

13.
This paper deals with Liénard equations of the form , , with P and Q polynomials of degree 5 and 4 respectively. Attention goes to perturbations of the Hamiltonian vector fields with an elliptic Hamiltonian of degree six, exhibiting a double figure eight loop. The number of limit cycles and their distributions are given by using the methods of bifurcation theory and qualitative analysis.  相似文献   

14.
In this paper, we prove the existence of 12 small-amplitude limit cycles around a singular point in a planar cubic-degree polynomial system. Based on two previously developed cubic systems in the literature, which have been proved to exhibit 11 small-amplitude limit cycles, we applied a different method to show 11 limit cycles. Moreover, we show that one of the systems can actually have 12 small-amplitude limit cycles around a singular point. This is the best result so far obtained in cubic planar vector fields around a singular point.  相似文献   

15.
In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with the center at the origin and a homoclinic loop around the origin. By using the first Melnikov function of piecewise near-Hamiltonian systems, we give lower bounds of the maximal number of limit cycles in Hopf and homoclinic bifurcations, and derive an upper bound of the number of limit cycles that bifurcate from the periodic annulus between the center and the homoclinic loop up to the first order in εε. In the case when the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first Melnikov function.  相似文献   

16.
This paper concerns with the number of limit cycles for a cubic Hamiltonian system under cubic perturbation. The fact that there exist 9-11 limit cycles is proved. The different distributions of limit cycles are given by using methods of bifurcation theory and qualitative analysis, among which two distributions of eleven limit cycles are new.  相似文献   

17.
In this paper, we characterize local behavior of an isolated nilpotent critical point for a class of septic polynomial differential systems, including center conditions and bifurcation of limit cycles. With the help of computer algebra system-MATHEMATICA 12.0, the first 15 quasi-Lyapunov constants are deduced. As a result, necessary and sufficient conditions of such system having a center are obtained. We prove that there exist 16 small amplitude limit cycles created from the third-order nilpotent critical point. And then we give a lower bound of cyclicity of third-order nilpotent critical point for septic Lyapunov systems.  相似文献   

18.
A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurcation, homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied. It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.  相似文献   

19.
In the present paper, for the three-order nilpotent critical point of a cubic Lyapunov system, the center problem and bifurcation of limit cycles are investigated. With the help of computer algebra system-MATHEMATICA, the first 7 quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact of there exist 7 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for cubic Lyapunov systems.  相似文献   

20.
研究了生物化学反应中一类非线性系统,得到了该系统的环绕正奇点极限环的充分必要条件,并且证明了如果存在极限环,则必惟一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号