共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of Ir (III)-catalyzed Oxidation of D-glucose by Potassium Iodate in Aqueous Alkaline Medium
Surya Prakash Singh Ashok Kumar Singh Ajaya Kumar Singh 《Journal of carbohydrate chemistry》2013,32(5):278-292
The kinetics of Ir (III) chloride-catalyzed oxidation of D-glucose by iodate in aqueous alkaline medium was investigated at 45°C. The reaction follows first-order kinetics with respect to potassium iodate in its low concentration range but tends to zero order at its higher concentration. Zero-order kinetics with respect to [D-glucose] was observed. In the lower concentration range of Ir (III) chloride, the reaction follows first kinetics, while the order shifts from first to zero at its higher concentration range. The reaction follows first-order kinetics with respect to [OH?] at its low concentration but tends towards zero order at higher concentration. Variation in [Cl?] and ionic strength of the medium did not bring about any significant change in the rate of reaction. The first-order rate constant increased with a decrease in the dielectric constant of the medium. The values of rate constants observed at four different temperatures were utilized to calculate the activation parameters. Sodium salt of formic acid and arabinonic acid have been identified as the main oxidation products of the reaction. A plausible mechanism from the results of kinetic studies, reaction stoichiometry, and product analysis has been proposed. 相似文献
2.
3.
The kinetics of oxidation of atenolol (ATN) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction between DPC and ATN in alkaline medium exhibits 1:2 stoichiometry (ATN:DPC). The reaction is of first order in [DPC] and has less than unit order in both [ATN] and [alkali]. However, the order in [ATN] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–ATN complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test, IR, NMR and LC–ESI-MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. 相似文献
4.
二过碘酸合铜(III)氧化乙醇胺的动力学及机理 总被引:1,自引:0,他引:1
近年来,三价铜的过碘酸配合物作为氧化剂在有机物的定量测定中得到广泛的应用问.Movius风和Murthy门分列报导了二过碘酸合铜(Ill)氧化一元醇的反应动力学,但二者所得结果有一定的差别·由于C“m)处于最高氧化态,反应体系又比较复杂·目前人们对它的认识并不太清楚·本文就CU()氧化乙醇胺(则进行了动力学及机理的研究·1实验部分所用仪器及测定人。s的实验手续同前文*.2结果与讨论2.1准一级速车常教k。bs的求得在D川。三IO可*u(m)IO条件下,以w人一*。)对时间土的图为直线,表明反应对[Cb(Ill)]为一级·准一级速… 相似文献
5.
The kinetics of oxidation of sarcosine by diperiodatocuprate(III) (DPC) was studied with spectrophotometry in a temperature range of 292.2–304.2 K. The reaction between diperiodatocuprate(III) and sarcosine in alkaline medium exhibits 1:1 stoichiometry (DPC:sarcosine). The reaction was found to be first order with respect to both DPC and sarcosine. The observed rate constant (kobs) decreased with the increase of the [IO?4], decreased with the increase of the [OH?], and then increased with the increase of the [OH?] after a turning point. There was no salt effect, and free radicals were detected. Based on the experimental results, a mechanism involving the diperiodatocuprate(III) (DPC) as the reactive species of the oxidant has been proposed. The activation parameters, as well as the rate constants of the rate‐determining step, have been calculated. 相似文献
6.
在碱性介质中,用传统的分光光度法研究了Ag(III)配离子,即[Ag(HIO6)2]5-,氧化药物分子愈创甘油醚的动力学及其机理.用质谱鉴定了氧化产物;反应对Ag(III)和愈创甘油醚均为一级;在温度25.0-40.0℃范围内,通过分析[OH-]和[IO4-]tot对反应速率的影响,二级速率常数有以下表达式:k′=(ka kb[OH-])K1/{f([OH-])[IO4-]tot K1},在25.0℃及离子强度0.30mol·L-1时,对此反应有ka=(2.6±1.2)×10-2mol-1·L·s-1,kb=(2.8±0.1)mol-2·L2·s-1,及K1=(4.1±0.4)×10-4mol·L-1,求出了涉及ka,kb的活化参数,并据此推出反应机理为反应体系中的[Ag(HIO6)2]5-配离子在前期平衡后,反应活性中心与药物分子形成Ag(III)-过碘酸-愈创甘油醚分子三元配合物,配位甘油醚分子通过两个平行途径将两电子传递给中心原子Ag:一个途径无OH-离子参与,另一途径有OH-参与完成. 相似文献
7.
8.
Jyothi C. Abbar Shweta J. Malode Sharanappa T. Nandibewoor 《Journal of molecular catalysis. A, Chemical》2009,313(1-2):88-99
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH−] and decreased with an increase in [IO4−] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species. 相似文献
9.
二过碘酸合铜(III)氧化氨基丙酸的动力学 总被引:3,自引:0,他引:3
高氧化态的过渡金属通常借助与适当多齿配体螯合能稳定存在.例如二羟基二过碘酸合镍(IV)[1,2]和二过碘酸合铜(皿)[3,4]等在适当pH下都是良好的氧化剂.近期Morius[3]和Murthy[4]等人进行了Cu(III)对一元醇、醛等有机化合物的氧化反应动力学研究,两者所得结果有一定的差别.例如前者得出反应对于过碘酸为一1.0级,而后者为一0.45级.由于这类反应比较复杂,而且钢在许多包含有电子转移的生物化学过程中起着重要的作用问,因此对这类反应体系进一步探讨有一定的意义·及实验部分(1)试剂和仪器a一氨基丙酸和其它试剂都不低… 相似文献
10.
在碱性介质中, 用传统的分光光度法研究了Ag(III)配离子, 即[Ag(HIO6)2]5-, 氧化药物分子愈创甘油醚的动力学及其机理. 用质谱鉴定了氧化产物;反应对Ag(III) 和愈创甘油醚均为一级;在温度25.0-40.0 ℃范围内, 通过分析[OH-]和[IO-4]tot对反应速率的影响, 二级速率常数有以下表达式:k′=(ka+kb[OH-])K1/{f([OH-])[IO-4]tot+K1}, 在25.0 ℃及离子强度0.30 mol·L-1时, 对此反应有ka=(2.6±1.2)×10-2 mol-1·L·s-1, kb=(2.8±0.1) mol-2·L2·s-1, 及K1=(4.1±0.4)×10-4 mol·L-1, 求出了涉及ka, kb的活化参数, 并据此推出反应机理为反应体系中的[Ag(HIO6)2]5-配离子在前期平衡后, 反应活性中心与药物分子形成Ag(III)-过碘酸-愈创甘油醚分子三元配合物, 配位甘油醚分子通过两个平行途径将两电子传递给中心原子Ag:一个途径无OH-离子参与, 另一途径有OH-参与完成. 相似文献
11.
Israel Zilbermann Avraham Meshulam Haim Cohen Dan Meyerstein 《Supramolecular chemistry》2013,25(2):325-332
Abstract The mechanisms and kinetics of oxidation of ascorbate, AH?, by Ni(III)Li aq and by LiNi(III) (HPO4)2 ? complexes (L1 = meso-(5,12)-7,7,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; L2 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) in neutral aqueous solutions have been investigated. The oxidation of ascorbate by the LiNi(III) (HPO4)2 ? and Ni(III)L1 aq proceeds via two consecutive reactions well separated in time. The products of the first reaction are the A.? radical anion and the corresponding Ni(II) complex. The oxidations by the LiNi(III)(HPO4)2 ? complexes proceed via the outer sphere mechanism, whereas the detailed mechanism of reaction of Ni(III)L1 aq cannot be determined. The rate of reaction decreases with the increase in the concentration of phosphate, thus indicating that LiNi(III)(HPO4)(H2O)+ and LiNi(III)OH2+ are stronger oxidizing agents than LiNi(III)(HPO4)? 2. The oxidation of ascorbate by Ni(III)L2 aq proceeds via three consecutive reactions which are well separated in time. Thus the results clearly point out that this process occurs via the inner sphere mechanism. The first transient observed is tentatively identified as L2(H2O)Ni(II)(A.?)2+, i.e., an unexpected complex of the ascorbate anion radical. Also in this process the last transient observed is the A.? anion radical. The stabilization of the ascorbyl radical in a transient complex might be of biological significance. 相似文献
12.
《印度化学会志》2021,98(8):100104
The kinetics approach of oxidation of torsemide (TOR) by hexacyanoferrate (III) [HCF (III)] has been identified spectrophotometrically at 420 nm in the alkaline medium in the presence and absence of catalyst ruthenium (III) at 25 °C, by keeping ionic strength (1 × 10−2 mol dm−3) constant. The reaction exhibits at the stoichiometry ratio 1:2 of TOR and HCF (III), for uncatalysed and catalysed reactions. In the absence and presence of the catalyst, the order of the reactions obtained for TOR and HCF (III) was unity. However, the rate of the reactions enhanced by the increase in the concentration of catalyst, as well as the rate increases with an increase in alkaline concentration. The activation parameters for the reaction at the slow step were identified, and the effect of temperature on the rate of the reaction was analysed. A suitable mechanism has been demonstrated by considering the obtained results. The derived rate laws are reliable with analysed experimental kinetics. 相似文献
13.
14.
Abdulazizkhan L. Harihar Mohammedsaleem R. Kembhavi Sharanappa T. Nandibewoor 《Monatshefte für Chemie / Chemical Monthly》2000,131(11):1129-1137
Summary. The title reaction was investigated in aqueous alkaline medium. A first order dependence on both [diperiodatonickelate(IV)]
and [OH−] and an apparent fractional order in [1,10-Phenanthroline] was obtained. Addition of the reaction product has no effect on
the reaction. The effects of dielectric constant, ionic strength, and temperature on the rate of the reaction were studied.
A mechanism based on the experimental results is proposed, and the constants involved in the mechanism were evaluated. A good
agreement between the observed and calculated rate constants at varying experimental conditions was obtained.
Received May 26, 2000. Accepted (revised) July 27, 2000 相似文献
15.
在酸性介质中用氧化还原滴定法研究了铈(IV)离子在痕量铱(III)离子催化作用下,于298~313 K区间氧化四氢糠醇(THFA)的反应动力学. 结果表明,反应对铈(IV)离子为一级,对铱(III)离子也为一级,对四氢糠醇的表观反应级数为正分数. 准一级速率常数kobs随[H+]增加而增大,而随[HSO4-]增加而减小. 在氮气保护下,反应能引发丙烯腈聚合,说明在反应中有自由基产生. 通过kobs与[HSO4-]的依赖关系,找到本反应体系的动力学活性物种是Ce(SO4)2,并计算出平衡常数,速控步骤的速率常数及相应的活化参数. 相似文献
16.
Anil K. Awasthi Santosh K. Upadhyay 《Monatshefte für Chemie / Chemical Monthly》1985,116(6-7):729-736
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN)
3–
6
] while that of acetaldehyde is proportional tok[Fe(CN)
3–
6
]/{k +k[Fe(CN)
3–
6
]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)]
T
in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.相似文献
17.
Rahamatalla M. Mulla Gurubasavaraj C. Hiremath Sharanappa T. Nandibewoor 《Monatshefte für Chemie / Chemical Monthly》2004,135(12):1489-1502
Summary. The kinetics of ruthenium(III) catalysed oxidation of sulfanilic acid (p-aminobenzenesulfonic acid) by hexacyanoferrate(III) in alkaline medium at a constant ionic strength of 2.5mol·dm–3 has been studied spectrophotometrically using a rapid kinetic accessory. The reaction exhibits 2:8 stoichiometry (SNA:HCF(III)). The reaction showed first order kinetics in [hexacyanoferrate(III)] and [ruthenium(III)] and apparent less than unit order in both sulfanilic acid and alkali concentrations. The reaction rate increases with increasing ionic strength but the relative permittivity (T) of the medium has a negligible effect on the rate of the reaction. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between sulfanilic acid and hydroxylated species of ruthenium(III) has been proposed. The active species of HCF(III) and ruthenium(III) are understood as [Fe(CN)63–] and [Ru(H2O)5OH]2+, respectively. The main products were identified by IR, NMR, and mass spectral studies. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated. 相似文献
18.
Nabila M. Guindy Zeinab M. Abou-Gamra Michel F. Abdel-Messih 《Monatshefte für Chemie / Chemical Monthly》2000,131(8):857-866
Summary. The kinetics of the formation of the 1:3 complex of chromium(III) with L-glutamic acid and DL-lysine were studied spectrophotometrically at and 550 nm. The reaction was found to be first order in both reactants. Increasing the hydrogen ion concentration from 3.2×10−5 to 1.0×10−3 molċdm−3 retarded the reaction rate which is of the form . Values of 28.8 and 63.6 kJċmol−1 were obtained for the energy of activation and −184 and −116 Jċ K−1ċmol−1 for the entropy of activation for L-glutamic acid and DL-lysine. The logarithms of the formation constants of the two complexes were found to be 5.9 and 5.1.
Received January 7, 2000. Accepted (revised) March 8, 2000 相似文献
19.
Dinesh C. Bilehal Raviraj M. Kulkarni Sharanappa T. Nandibewoor 《Reaction Kinetics and Catalysis Letters》2001,73(2):349-355
The ruthenium(III) catalyzed oxidation of dimethyl sulfoxide by N-chlorosuccinimide (NCS) in aqueous alkaline medium is found to occur via substrate-catalyst complex formation followed by the interaction of active species of NCS viz., HOCl and the complex in a slow step to yield the products with regeneration of the catalyst. One of the products, succinimide,
retards the rate of reaction. The reaction is first order in [NCS] and [Ru(III)], lower than first order in [DMSO] and of
inverse fractional order in [OH-]. A suitable mechanism is proposed and the reaction constants of individual steps involved in the mechanism have been evaluated.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
The kinetics of oxidation of a non-steroidal analgesic drug, aspirin (ASP) by diperiodatocuprate(III)(DPC) in the presence and absence of osmium(VIII) have been investigated at 298 K in alkaline medium at a constant ionic strength of 0.10 mol dm−3 spectrophotometrically. The reaction showed a first-order in [DPC] and less than unit order in [ASP] and [alkali] for both the osmium(VIII) catalysed and uncatalysed reactions. The order with respect to Os(VIII) concentration was unity. The effects of added products, ionic strength, periodate and dielectric constant have been studied. The stoichiometry of the reaction was found to be 1:4 (ASP:DPC) for both the cases. The main oxidation product of aspirin was identified by spot test, IR, NMR and GC–MS. The reaction constants involved in the different steps of the mechanisms were calculated for both reactions. Activation parameters with respect to slow step of the mechanisms were computed and discussed for both the cases. The thermodynamic quantities were also determined for both reactions. The catalytic constant (KC) was also calculated for catalysed reaction at different temperatures and the corresponding activation parameters were determined. 相似文献