首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two laser ablation systems dedicated to bulk analysis were evaluated for steel and PVC samples, using inductively coupled plasma atomic emission spectrometry detection. These systems were characterized by the use of a Nd:YAG laser operating at 1064 nm, the absence of observation device and a large laser spot size. The 1064 nm wavelength was selected to avoid the use of frequency-multiplying optics, and to be less critical to the sampling position. Calibration graphs and limits of detection are given for both types of materials. LODs were in the range 3–120 μg/g for steel, and in the range 0.07–15 μg/g for PVC. In the case of steel samples, similar calibration graph slopes were obtained between polished and unpolished samples.  相似文献   

2.
This paper describes a low cost detection system for Laser Induced Breakdown Spectroscopy based on a simple spectrograph employing a conventional diffraction grating and a non-intensified, non-gated, non-cooled 1024 pixel Complementary Metal Oxide Semiconductor linear sensor array covering the spectral range from about 250 to 390 nm. It was employed in conjunction with a 1064 nm, 5 ns pulse duration Nd:YAG laser source for analyzing steel samples using the integration of 300 analysis pulses (35 mJ each). That led to gains in the signal-to-noise ratio of approximately 3 and 16 for Mn and Fe peaks, respectively, in addition to gains in the emission intensities of about 5.3, both in comparison with the integration of just 50 analysis pulses. The acquired emission spectra were used for Mn determination, in the range from 0.214 to 0.608% m/m as previously determined by ICP OES, evaluating different univariate (at different discrete wavelengths) and multivariate (over different spectral ranges) calibration strategies. The best results, using a PLS calibration model in the spectral range from 292.9 to 294.5 nm (related to Mn emission peaks), had relative errors of prediction of the Mn concentrations, for samples not employed in the calibration, from 0.3 to 7.3%, which are similar to or better than those obtained for Mn determination in steel using higher cost detection systems. The successful analytical application of the new detection system demonstrated that the performance of low cost detection systems can be very good for specific applications and that its low resolution and sensitivity can be at least partially compensated by the use of chemometrics and the integration of analysis pulses.  相似文献   

3.
Recent trends and developments in laser ablation-ICP-mass spectrometry   总被引:3,自引:0,他引:3  
The increased interest in laser technology (e.g. for micro-machining, for medical applications, light shows, CD-players) is a tremendous driving force for the development of new laser types and optical set-ups. This directly influences their use in analytical chemistry. For direct analysis of the elemental composition of solids, mostly solid state lasers, such as Nd:YAG laser systems operating at 1064 nm (fundamental wavelength), 266 nm (frequency quadrupled) and even 213 nm (frequency quintupled) have been investigated in combination with all available inductively coupled plasma mass spectrometers. The trend towards shorter wavelengths (1064 nm - 157 nm) was initiated by access to high quality optical materials which led to the incorporation of UV gas lasers, such as excimer lasers (XeCl 308 nm, KrF 248 nm, ArF 193 nm, and F2 157 nm) into laser ablation set-ups. The flexibility in laser wavelengths, output energy, repetition rate, and spatial resolution allows qualitative and quantitative local and bulk elemental analysis as well as the determination of isotope ratios. However, the ablation process and the ablation behavior of various solid samples are different and no laser wavelength was found suitable for all types of solid samples. This article highlights some of the successfully applied systems in LA-ICP-MS. The current fields of applications are explained on selected examples using 266 nm and 193 nm laser ablation systems.  相似文献   

4.
A pulsed Nd:YAG laser operating on the fourth (266 nm) and second (532 nm) harmonics has been used to generate plasmas on the target surface in air at atmospheric pressure. The influence of wavelength on quantitative analysis of 4 minor elements in stainless steel samples (Si, Ti, Nb and Mo) was investigated. Stainless steel samples with different elemental concentrations were prepared and analyzed by laser-induced plasma spectrometry (LIPS). The effect of laser wavelength on analytical figures of merit (calibration curves, correlation coefficients, linear dynamic ranges, analytical precision, and accuracy values) was found to be negligible when internal standardization (an Fe line) and time-resolved laser-induced plasma are employed. For both wavelengths, the calibration curves presented a good linearity and an acceptable linear dynamic range in the concentration interval investigated. For the four elements studied, limits of detection lower than 150 microg g(-1) were achieved. To evaluate the influence of wavelength on precision and accuracy, a set of fifteen high-alloyed steel samples from different stages of steelmaking process have been analyzed. Finally, the long-term stability of the analytical measurements for Mo with 532 nm wavelength has been discussed. RSD values were lower than 5.3% for the elements studied.  相似文献   

5.
The development of a new detection system for laser induced breakdown spectroscopy (LIBS), based on a collinear quartz acousto-optical tunable filter (AOTF) for the ultraviolet spectral region coupled to a photomultiplier, is described. It was used in conjunction with a 1064 nm, 5 ns pulse duration neodymium-doped yttrium aluminium garnet (Nd:YAG) laser source and also employed a radio-frequency signal generator to control the AOTF and a digital delay generator to delay the start of the detection in relation to the instant of the application of the laser pulse. The detection system was optimized for highest detectivity for the manganese peak at 293.9 nm while analyzing a steel sample by LIBS. The resulting signal to background ratio at the optimal conditions of 2 µs delay time, 40 µs integration time gate and 110 mJ pulse energy was similar to that of a commercial echelle-intensified charge-coupled device (echelle-ICCD) detection system. The new detection system was then employed for manganese determination in steel samples, taking the emission signals at just 15 wavelengths, 5 related to the above mentioned manganese peak, another 5 to background emission around 296.0 nm and the others to the iron peak at 297.3 nm (internal standard). The resulting analytical curve for manganese, obtained using 5 samples in the concentration range of 0.214 to 0.939% w/w, presented a correlation coefficient of 0.979 for an exponential regression function. The relative errors of predicting the manganese concentrations, using the calibration curve, for 2 samples, containing 0.277 and 0.608% w/w, were 20.7 and − 1.9%, respectively.  相似文献   

6.
The increased interest in laser technology (e.g. for micro-machining, for medical applications, light shows, CD-players) is a tremendous driving force for the development of new laser types and optical set-ups. This directly influences their use in analytical chemistry. For direct analysis of the elemental composition of solids, mostly solid state lasers, such as Nd:YAG laser systems operating at 1064 nm (fundamental wavelength), 266 nm (frequency quadrupled) and even 213 nm (frequency quintupled) have been investigated in combination with all available inductively coupled plasma mass spectrometers. The trend towards shorter wavelengths (1064 nm– 157 nm) was initiated by access to high quality optical materials which led to the incorporation of UV gas lasers, such as excimer lasers (XeCl 308 nm, KrF 248 nm, ArF 193 nm, and F2 157 nm) into laser ablation set-ups. The flexibility in laser wavelengths, output energy, repetition rate, and spatial resolution allows qualitative and quantitative local and bulk elemental analysis as well as the determination of isotope ratios. However, the ablation process and the ablation behavior of various solid samples are different and no laser wavelength was found suitable for all types of solid samples. This article highlights some of the successfully applied systems in LA-ICP-MS. The current fields of applications are explained on selected examples using 266 nm and 193 nm laser ablation systems.  相似文献   

7.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

8.
The interactions of lysozyme and calf thymus DNA (ctDNA) or thioglycolic acid (TGA) modified CdTe nanoparticles in aqueous solution have been studied by resonance light-scattering (RLS) spectroscopy. At pH 7.2 Britton-Robinson (BR) buffer solution and pH 7.4 phosphate buffered saline (PBS), the RLS signals of ctDNA and TGA modified CdTe nanoparticles were greatly enhanced by lysozyme in the region of 220-750 nm characterized by the peak around 306 and 353 nm, respectively. Under optimal conditions, the increase of RLS intensity of the two systems is proportional to the concentration of lysozyme. The linear range is 0.1-25 microg/ml for the lysozyme-ctDNA system, and 0.2-10.7 microg/ml for the lysozyme-TGA modified CdTe nanoparticles system. The detection limit is 0.041 microg/ml for the lysozyme-ctDNA system, and 0.083 microg/ml for the lysozyme-TGA modified CdTe nanoparticles system, respectively. Meanwhile lysozyme can also be used as a probe to determine the ctDNA. The increase of RLS intensity of the system is also proportional to the concentration of ctDNA. The linear range is 0.078-13 microg/ml. The detection limit is 0.024 microg/ml. Three kinds of samples were analyzed with satisfactory results.  相似文献   

9.
Yamada S  Shinno I 《Talanta》1989,36(9):937-940
Novel two- and three-wavelength laser multiphoton ionization techniques for highly sensitive detection in solution have been established. The photocurrent signal obtained for benzo[a]pyrene by irradiation at 355 nm in n-heptane was effectively enhanced by additional simultaneous irradiation at 532 and/or 1064 nm. The additional irradiation at 532 nm (5 mJ) doubled the signal-to-noise ratio, while that at 1064 nm (30 mJ) increased it 5.5-fold relative to that obtained when only the 355 nm radiation was used. The simultaneous action of 355, 532 (5 mJ) and 1064 (25 mJ) nm radiation further improved the S/N ratio; the detection limit was as low as 1.9 x 10(-10)M. The 532 nm radiation enhanced the photocurrent signal more effectively than did the 1064 nm radiation.  相似文献   

10.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9–1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1–10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

11.
A sensitive and selective liquid chromatographic (LC) assay was developed to determine the concentration of pyrimethamine in animal tissue and egg by fluorescent derivative. Animal samples were extracted with acetonitrile, centrifuged, and purified by hexane. Fluorescent derivatization was performed by reacting pyrimethamine with chloroacetaldehyde and subjected to LC with fluorescence detection (excitation wavelength 300 nm, emission wavelength 420 nm). The limit of detection was 10 ng/g (10 ppb) and the standard calibration curve was linear in the range of 1-100 ppb (0.01-1 ng/10 microL). Recoveries from samples fortified at levels of 0.1 and 1 ppm (microg/g) were 61.0-77.4 and 65.5-81.2%, respectively. The method was applied to the monitoring of marketed samples. Pyrimethamine was not determined in any of the 70 samples: 20 swine muscle; 20 chicken muscle; 10 chicken liver; and 20 egg.  相似文献   

12.
A four step Ag foil laser ablation-Ag nanoparticle fragmentation procedure in ultrapure water was carried out both under argon and in air. Pulses of a high power Nd/YAG laser were used for laser ablation (1064 nm) and for the three step Ag hydrosol treatment in the absence of Ag foil in the sequence 1064-532-1064 nm. Transmission electron microscopy (TEM) and surface plasmon (SP) extinction spectra provide evidence of Ag nanoparticle fragmentation in the second and third step of the procedure carried out under argon. While polydispersity of Ag hydrosol increases in the second step, both the polydispersity and the mean size of the nanoparticles are reduced in the third step. Qualitative and quantitative surface-enhanced Raman scattering (SERS)/surface-enhanced resonance Raman scattering (SERRS) spectral probing of systems with Ag hydrosols and the selected adsorbates at 514.5 nm excitation shows that Ag hydrosols obtained in the second step of the preparation procedure carried out in air are the most suitable substrates for SERS/SERRS experiments performed at this excitation wavelength.  相似文献   

13.
In this work, two capillary zone electrophoresis methodologies using UV absorption detection (214 nm) and laser-induced fluorescence detection (He/Cd laser, 325 nm excitation, 520 nm emission) of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde and acrolein) derivatized with dansylhydrazine (DNSH, 5-dimethylaminonaphthalene-1-sulfohydrazide) were proposed and validated. The aldehydes react with DNSH to form negatively charged molecules in methanolic medium. In both methodologies, nine DNSH-derivatives, including isomers of acetaldehyde, propionaldehyde and acrolein and two impurities were baseline separated in 20 mmol l(-1) phosphate buffer at pH 7.02, in less than 9 min. The limits of detection for the UV and LIF methodologies ranged from 1.1-9.5 microg l(-1) and 0.29-5.3 microg l(-1), respectively. The applicability of both methodologies to contemplate real samples was confirmed in the analysis of aldehyde-DNSH derivatives in indoor and outdoor air samples.  相似文献   

14.
Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was applied to separation and sensitive determination of red food colorants. Diode pumped frequency-doubled Nd:YAG laser (532 nm) was used as an excitation source in a laboratory-built CE-LIF system. For highly fluorescent erythrosine B (E127), an extrapolated limit of detection (LOD) of 0.4 ng mL(-1) (S/N=3) was achieved. Extrapolated LODs of other tested red additives, such as carmoisine, E122 (0.5 microg mL(-1)); amaranth, E123 (0.2 microg mL(-1)); ponceau 4R, E124 (0.3 microg mL(-1)) and red 2G, E128 (0.3 microg mL(-1)) were about one-order lower compared to results obtained with CE with absorbance detection in UV/vis (CE-UV/vis). The main advantages of using CE-LIF for analysis of food samples are high selectivity and minimization of matrix effect. To our knowledge, this is the first use of CE-LIF for determination of red food colorants.  相似文献   

15.
Fractional wavelet transform (FWT) was applied to the original absorption spectra of lacidipine (LAC) and its photodegradation product (LACD), and the resulting FWT spectra were processed by continuous wavelet transform (CWT) and multilinear regression calibration (MLRC) for the simultaneous quantitative analysis of both products in their binary mixtures. These methods do not require any chemical separation step and chemical complex reaction to obtain a detectable signal for the degradation product. By using the Mexican hat function, 2 calibration functions for LAC and LACD were obtained by measuring the CWT transformed signals at 416.1 nm for LAC and 414.6 nm for LACD, after FWT processing of the original absorption spectra. The calibration graphs were linear in the concentration range of 5.08-40.64 microg/mL for LAC and 0.51-8.16 microg/mL for LACD. The limit of detection and the limit of quantitation were found to be 0.289 and 0.956 microg/mL for LAC and 0.036 and 0.118 microg/mL for LACD, respectively. For comparison, the MLRC algorithm was applied to the linear regression functions for the individual drug and its photoproduct. In this approach, a set of linear regression functions was obtained from the relationship between concentrations and FWT signals in the wavelength range 411.0-412.4 nm. Both methods were applied to the quantitative evaluation of LAC and LACD in laboratory and pharmaceutical samples, and produced very satisfactory results.  相似文献   

16.
A simple, sensitive and rapid reversed-phase high-performance liquid chromatography (RP-HPLC) method is proposed for the analysis of some environmentally important phenols in water. The use of coumarin-6-sulphonyl chloride (C6SCl) as a fluorescence-labeling reagent has been investigated. The compound reacts with phenols within 20 min under mild conditions (ambient temperature, pH 9.0) to give sulphonates that can be separated by RP-HPLC employing fluorescence detection at lambda(ex) = 360 and lambda(em) = 460 nm. The optimum conditions for fluorescence, derivatization and chromatographic separation have been established and detection limits in the range 0.1-0.9 microg l(-1) were obtained for the studied compounds. The calibration curves were linear for the range 6-200 microg l(-1) for phenol, 3-200 microg l(-1) for 2-chlorophenol, 4-chlorophenol and 2,3,5-trichlorophenol and for the range of 3-100 microg l(-1) for 2,3-dichlorophenol and 3,5-dichlorophenol. The practical applicability of the method to environmental samples was demonstrated by analyzing drinking and industrial water samples spiked with the phenolic compounds.  相似文献   

17.
Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation.

Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.  相似文献   


18.
A micellar electrokinetic capillary method for the simultaneous determination of the sweeteners dulcin, aspartame, saccharin, and acesulfame-K and the preservatives sorbic acid; benzoic acid; sodium dehydroacetate; and methyl-, ethyl-, propyl-, isopropyl-, butyl-, and isobutyl-p-hydroxybenzoate in preserved fruits is developed. These additives are ion-paired and extracted using sonication followed by solid-phase extraction from the sample. Separation is achieved using a 57-cm fused-silica capillary with a buffer comprised of 0.05 M sodium deoxycholate, 0.02 M borate-phosphate buffer (pH 8.6), and 5% acetonitrile, and the wavelength for detection is 214 nm. The average recovery rate for all sweeteners and preservatives is approximately 90% with good reproducibility, and the detection limits range from 10 to 25 microg/g. Fifty preserved fruit samples are analyzed for the content of sweeteners and preservatives. The sweeteners found in 28 samples was aspartame (0.17-11.59 g/kg) or saccharin (0.09-5.64 g/kg). Benzoic acid (0.02-1.72 g/kg) and sorbic acid (0.27-1.15 g/kg) were found as preservatives in 29 samples.  相似文献   

19.
A high-performance liquid chromatographic method with diode-array detection, at 351 nm, was developed and validated for the determination of five tetracyclines (TCs): minocycline, tetracycline, oxytetracycline, chlortetracycline, and doxycycline in bovine muscle. Samples were macerated with a buffer solution, centrifuged, and purified using Abselut Nexus SPE cartridges. The separation of the examined TCs was achieved on an Inertsil ODS-3 5 microm, 250 x 4 mm analytical column, at ambient temperature. A multistep gradient elution was followed using 0.05 M oxalic acid and CH3CN, at a flow rate of 1.65 mL/min. The procedure was validated according to the European Union regulation 2002/657/EC determining selectivity, stability, decision limit, detection capability, accuracy, and precision. The results of the validation process demonstrate that the method can be readily applied to European Union statutory veterinary drug residue surveillance programmes. Mean recoveries of TCs from bovine muscle samples spiked at three concentrations (100, 250, and 400 ng/g) were in the range of 98.7-103.3%. Method's LOQ values achieved were 40 microg/kg for MNC, CTC, and DC and 25 microg/kg for OTC and TC. The decision limits (CCalpha) were in the range of 104.7-109.8 microg/kg, while the detection capability (CCbeta) was in the range of 108.4-116.7 microg/kg for all compounds.  相似文献   

20.
A high-performance liquid chromatography (LC) method was developed for the determination of halofuginone (HFG) in sturgeon muscle. The extracted samples were cleaned up by an immunoaffinity chromatography column that was prepared by covalently coupling polyclonal antibodies against HFG to cyanogen bromide (CNBr) activated Sepharose 4B. The eluate was evaporated to dryness, and residues were determined by LC with absorbance detection at 243 nm. Recoveries of HFG from samples fortified at 20-200 microg/kg levels ranged 74.6-81.1%, with coefficients of variation of 0.7-8.6%. The detection limit was estimated to be 10 microg/kg in a 2 g sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号