首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the transition density of a standard two-dimensional Brownian motion killed when hitting a bounded Borel set A. We derive the asymptotic form of the density, say \(p^A_t(\mathbf{x},\mathbf{y})\), for large times t and for \(\mathbf{x}\) and \(\mathbf{y}\) in the exterior of A valid uniformly under the constraint \(|\mathbf{x}|\vee |\mathbf{y}| =O(t)\). Within the parabolic regime \(|\mathbf{x}|\vee |\mathbf{y}| = O(\sqrt{t})\) in particular \(p^A_t(\mathbf{x},\mathbf{y})\) is shown to behave like \(4e_A(\mathbf{x})e_A(\mathbf{y}) (\lg t)^{-2} p_t(\mathbf{y}-\mathbf{x})\) for large t, where \(p_t(\mathbf{y}-\mathbf{x})\) is the transition kernel of the Brownian motion (without killing) and \(e_A\) is the Green function for the ‘exterior of A’ with a pole at infinity normalized so that \(e_A(\mathbf{x}) \sim \lg |\mathbf{x}|\). We also provide fairly accurate upper and lower bounds of \(p^A_t(\mathbf{x},\mathbf{y})\) for the case \(|\mathbf{x}|\vee |\mathbf{y}|>t\) as well as corresponding results for the higher dimensions.  相似文献   

2.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

3.
For two independent groups, let \(M_j(\mathbf {X})\) be some conditional measure of location for the jth group associated with some random variable Y given \(\mathbf {X}=(X_1, X_2)\). Let \(\Omega =\{\mathbf {X}_1, \ldots , \mathbf {X}_K\}\) be a set of K points to be determined. An extant technique can be used to test \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for each \(\mathbf {X} \in \Omega \) without making any parametric assumption about \(M_j(\mathbf {X})\). But there are two general reasons to suspect that the method can have relatively low power. The paper reports simulation results on an alternative approach that is designed to test the global hypothesis \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for all \(\mathbf {X} \in \Omega \). The main result is that the new method offers a distinct power advantage. Using data from the Well Elderly 2 study, it is illustrated that the alternative method can make a practical difference in terms of detecting a difference between two groups.  相似文献   

4.
The Finsler p-Laplacian is the class of nonlinear differential operators given by
$$\begin{aligned} \Delta _{H,p}u:= \text {div}(H(\nabla u)^{p-1}\nabla _{\eta } H(\nabla u)) \end{aligned}$$
where \(1<p<\infty \) and \(H:\mathbf {R}^N\rightarrow [0,\infty )\) is in \(C^2(\mathbf {R}^N\backslash \{0\})\) and is positively homogeneous of degree 1. Under some additional constraints on H, we derive the Hardy inequality for Finsler p-Laplacian in exterior domain for \(1<p\le N\). We also provide an improved version of Hardy inequality for the case \(p=2\).
  相似文献   

5.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

6.
If \(A\in B(\mathcal{X})\) is an upper triangular Banach space operator with diagonal \((A_1,A_2)\), \(A_1\) invertible and \(A_2\) quasinilpotent, then \(A_1^{-1}\oplus A_2\) satisfies either of the single-valued extension property, Dunford’s condition (C), Bishop’s property \((\beta )\), decomposition property \((\delta )\) or is decomposable if and only if \(A_1\) has the property. The operator \(A^{-1}_1\oplus 0\) is subscalar (resp., left polaroid, right polaroid) if and only if \(A_1\) is subscalar (resp., left polaroid, right polaroid). For Drazin invertible operators A, with Drazin inverse B, this implies that B satisfies any one of these properties if and only if A satisfies the property.  相似文献   

7.
8.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

9.
For the natural two-parameter filtration \(\left( {\mathcal {F}_\lambda }: {\lambda \in P}\right) \) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on \(L^p(\Omega _0)\) for \(p \in (1, \infty )\). At the end, we consider \(L^p(\Omega _0)\) boundedness of martingale transforms. If the building is of \({\text {GL}}(3, \mathbb {Q}_p)\), then \(\Omega _0\) can be identified with p-adic Heisenberg group.  相似文献   

10.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

11.
For the stationary storage process {Q(t), t ≥ 0}, with \( Q(t)=\sup _{s\ge t}\left (X(s)-X(t)-c(s-t)^{\beta }\right ),\) where {X(t), t ≥ 0} is a centered Gaussian process with stationary increments, c > 0 and β > 0 is chosen such that Q(t) is finite a.s., we derive exact asymptotics of \(\mathbb {P}\left (\sup _{t\in [0,T_{u}]} Q(t)>u \right )\) and \(\mathbb {P}\left (\inf _{t\in [0,T_{u}]} Q(t)>u \right )\), as \(u\rightarrow \infty \). As a by-product we find conditions under which strong Piterbarg property holds.  相似文献   

12.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

13.
The notion of broken k-diamond partitions was introduced by Andrews and Paule in 2007. For a fixed positive integer k, let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n. Recently, Paule and Radu conjectured two relations on \(\Delta _5(n)\) which were proved by Xiong and Jameson, respectively. In this paper, employing these relations, we prove that, for any prime p with \(p\equiv 1\ (\mathrm{mod}\ 4)\), there exists an integer \(\lambda (p)\in \{2,\ 3,\ 5,\ 6,\ 11\}\) such that, for \(n, \alpha \ge 0\), if \(p\not \mid (2n+1)\), then
$$\begin{aligned} \Delta _5\left( 11p^{\lambda (p)(\alpha +1)-1} n+\frac{11p^{\lambda (p)(\alpha +1)-1}+1}{2}\right) \equiv 0\ (\mathrm{mod}\ 11). \end{aligned}$$
Moreover, some non-standard congruences modulo 11 for \(\Delta _5(n)\) are deduced. For example, we prove that, for \(\alpha \ge 0\), \(\Delta _5\left( \frac{11\times 5^{5\alpha }+1}{2}\right) \equiv 7\ (\mathrm{mod}\ 11)\).
  相似文献   

14.
Let n and s be integers such that \(1\le s<\frac{n}{2}\), and let \(M_n(\mathbb {K})\) be the ring of all \(n\times n\) matrices over a field \(\mathbb {K}\). Denote by \([\frac{n}{s}]\) the least integer m with \(m\ge \frac{n}{s}\). In this short note, it is proved that if \(g:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\) is a map such that \(g\left( \sum _{i=1}^{[\frac{n}{s}]}A_i\right) =\sum _{i=1}^{[\frac{n}{s}]}g(A_i)\) holds for any \([\frac{n}{s}]\) rank-s matrices \(A_1,\ldots ,A_{[\frac{n}{s}]}\in M_n(\mathbb {K})\), then \(g(x)=f(x)+g(0)\), \(x\in M_n(\mathbb {K})\), for some additive map \(f:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\). Particularly, g is additive if \(char\mathbb {K}\not \mid \left( [\frac{n}{s}]-1\right) \).  相似文献   

15.
We obtain the operator norms of the n-dimensional fractional Hardy operator H α (0 < α < n) from weighted Lebesgue spaces \(L_{\left| x \right|^\rho }^p (\mathbb{R}^n )\) to weighted weak Lebesgue spaces \(L_{\left| x \right|^\beta }^{q,\infty } (\mathbb{R}^n )\).  相似文献   

16.
Let \(b_{5}(n)\) denote the number of 5-regular partitions of n. We find the generating functions of \(b_{5}(An+B)\) for some special pairs of integers (AB). Moreover, we obtain infinite families of congruences for \(b_{5}(n)\) modulo powers of 5. For example, for any integers \(k\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{5}\left( 5^{2k-1}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}) \end{aligned}$$
and
$$\begin{aligned} b_{5}\left( 5^{2k}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}). \end{aligned}$$
  相似文献   

17.
Recently, Andrews, Dixit, and Yee introduced a new partition function \(p_{\omega }(n)\) that denotes the number of partitions of n in which each odd part is less than twice the smallest part. The generating function of \(p_{\omega }(n)\) is associated with the third-order mock theta function \(\omega (q)\). Andrews, Passary, Sellers, and Yee proved three infinite families of congruences modulo 4 and 8 for \(p_{\omega }(n)\) and provided elementary proofs of congruences modulo 5 for \(p_{\omega }(n)\) which were first discovered by Waldherr. In this paper, we prove some new congruences modulo 5 and powers of 2 for \(p_{\omega }(n)\). In particular, we obtain some non-standard congruences for \(p_{\omega }(n)\). For example, we prove that for \(k\ge 0\), \( p_{\omega }\left( \frac{7\times 5^{2k+1}+1 }{3}\right) \equiv (-1)^k \ (\mathrm{mod}\ 5) \) and \( p_\omega \left( \frac{2^{2k+7}+1}{3}\right) \equiv 1251 \times (-1)^k \ (\mathrm{mod}\ 2^{11})\).  相似文献   

18.
Let \(G=\mathbf{C}_{n_1}\times \cdots \times \mathbf{C}_{n_m}\) be an abelian group of order \(n=n_1\dots n_m\), where each \(\mathbf{C}_{n_t}\) is cyclic of order \(n_t\). We present a correspondence between the (4n, 2, 4n, 2n)-relative difference sets in \(G\times Q_8\) relative to the centre \(Z(Q_8)\) and the perfect arrays of size \(n_1\times \dots \times n_m\) over the quaternionic alphabet \(Q_8\cup qQ_8\), where \(q=(1+i+j+k)/2\). In view of this connection, for \(m=2\) we introduce new families of relative difference sets in \(G\times Q_8\), as well as new families of Williamson and Ito Hadamard matrices with G-invariant components.  相似文献   

19.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

20.
Let Q be a quasigroup. For \(\alpha ,\beta \in S_Q\) let \(Q_{\alpha ,\beta }\) be the principal isotope \(x*y = \alpha (x)\beta (y)\). Put \(\mathbf a(Q)= |\{(x,y,z)\in Q^3;\) \(x(yz)) = (xy)z\}|\) and assume that \(|Q|=n\). Then \(\sum _{\alpha ,\beta }\mathbf a(Q_{\alpha ,\beta })/(n!)^2 = n^2(1+(n-1)^{-1})\), and for every \(\alpha \in S_Q\) there is \(\sum _\beta \mathbf a(Q_{\alpha ,\beta })/n! = n(n-1)^{-1}\sum _x(f_x^2-2f_x+n)\ge n^2\), where \(f_x=|\{y\in Q;\) \( y = \alpha (y)x\}|\). If G is a group and \(\alpha \) is an orthomorphism, then \(\mathbf a(G_{\alpha ,\beta })=n^2\) for every \(\beta \in S_Q\). A detailed case study of \(\mathbf a(G_{\alpha ,\beta })\) is made for the situation when \(G = \mathbb Z_{2d}\), and both \(\alpha \) and \(\beta \) are “natural” near-orthomorphisms. Asymptotically, \(\mathbf a(G_{\alpha ,\beta })>3n\) if G is an abelian group of order n. Computational results: \(\mathbf a(7) = 17\) and \(\mathbf a(8) \le 21\), where \(\mathbf a(n) = \min \{\mathbf a(Q);\) \( |Q|=n\}\). There are also determined minimum values for \(\mathbf a(G_{\alpha ,\beta })\), G a group of order \(\le 8\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号