首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
This paper presents a comparative study of two path-following controllers developed for guiding autonomous vehicles in semi-structured outdoor environments. Part of this paper is focused on the performance of two path-following controllers, which are implemented using two different approaches, the first using fuzzy logic and the second using chained systems theory. The control effort and the errors magnitude along the path are evaluated in a comparative way. A magnetic guidance system for autonomous vehicles navigation in semi-structured outdoor environments is also described, integrating redundant encoders data and absolute positioning data provided by on-board magnetic sensors and magnetic markers buried in the road. Simulation and experimental results are presented showing the effectiveness of the overall control system.  相似文献   

2.
Adaptive robust fuzzy control for a class of uncertain chaotic systems   总被引:2,自引:0,他引:2  
In this paper, the output feedback control of uncertain chaotic systems is addressed via an adaptive robust fuzzy approach. Fuzzy logic systems are employed to approximate uncertain nonlinear functions in the chaotic systems. Because only partial information of the system’s states is needed to be known, an observer is given to estimate the unmeasured states. Compared with the existing results in the observer design, the prior knowledge on dynamic uncertainties is relaxed and a class of more general chaotic systems is considered as well as robustness to the approximation error is improved. It can be proven that the closed-loop system is stable in the sense that all the variables are bounded. Simulation example for the unified chaotic systems is given to verify the effectiveness of the proposed method. This work was supported in part by the National Natural Science Foundation of China (60874056) and the Foundation of Educational Department of Liaoning Province (2008312).  相似文献   

3.
A procedure based on neural networks for the classification of linear and nonlinear systems is presented, using excitation and response data under swept sine excitation. Special attention is paid to the classification and identification of linear and bilinear systems, the latter being considered since they exhibit typical characteristics of cracked systems. The computer simulations show that: (1) using the procedure presented in this paper the trained classification network can reliably classify a linear system and different nonlinear systems; (2) the output of the trained identification neural network for a linear system and a bilinear system can be used as a quantitative indicator of characteristics of bilinear systems having different stiffness ratios (k (x>0)/k (x<0)) with respect to the bilinear system used in the training stage; (3) for two-degree-of-freedom systems, the trained network can not only determine the existence of a bilinear stiffness and the magnitude of its stiffness ratio, but also specify which stiffness is bilinear, i.e. indicate its position. These results provide a possibility of using the trained neural networks to detect and locate structural cracks which have the characteristics of bilinear systems.Visiting scholar, from People's Republic of China.  相似文献   

4.
A new method for the periodic solution of strongly nonlinear system is given. By using this method, the existance and stability of the periodic solution can be decided, and the approximate expression of the periodic solution can also be found. The project supported by the National Natural Science Foundation of China  相似文献   

5.
Inheriting advantages of both proportional-integral-derivative controller and standard sliding mode control theory, a synthetic controller design for a class of nonlinear system is presented. Regarding the architecture of the developed controller, it does not include model-based nominal control term so that the method eliminates complicated processes for system parameters identification and design of extra compensators. With simple gain tuning rules, the proposed control algorithm provides global asymptotical stability and is capable of alleviating discontinuous control switching considerably. A self-sustained oscillations phenomenon caused by the proposed control configuration is also further addressed. Simulations and experiments are conducted to verify the feasibility and applicability of the proposed approach.  相似文献   

6.
7.
A non-perturbative approach to the time-averaging of nonlinear, autonomous ordinary differential equations is developed based on invariant manifold methodology. The method is implemented computationally and applied to model problems arising in the mechanics of solids.  相似文献   

8.
A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem to the solution of a set of linear algebraic equations in each iteration. The method is equally applicable for nonlinear systems which are represented in state-space form or by a set of second-order differential equations. The proposed technique is found to duplicate the periodic, multi-periodic and chaotic solutions of a parametrically excited system obtained previously using the conventional numerical integration schemes with comparable CPU times. The technique does not require the inversion of the mass matrix in the case of multi degree-of-freedom systems. The present method is also shown to offer significant computational conveniences over the conventional numerical integration routines when used in a scheme for the direct determination of periodic solutions. Of course, the technique is also applicable to non-parametrically excited nonlinear systems as well.  相似文献   

9.
10.
This paper describes a test-bed vehicle for studying the integration of the steering system of a wheeled vehicle with the drive system. The vehicle was produced in order to determine whether such an integrated system is practical; to investigate tractive performance compared to other steering-drive systems; and to determine under which conditions such a system has better performance. The integrated steering-drive system of the test-bed vehicle uses a computer to co-ordinate the independently driven wheel speeds of the drive system (which is also the primary steering system) with the steer angles of the non-driven steerable wheels to produce a beneficial secondary steering effect. The secondary steering system assists the primary steering system when side forces act on the vehicle, while producing minimal conflict. This concept can be applied to agricultural vehicles such as tractors, harvesters, mowers, sprayers and self-propelled windrowers. The test-bed vehicle is able to be configured for the following steering-drive systems types: open differential drive with steerable wheels, independent drive wheels with castors, locked differential drive with steerable wheels and a computer integrated steering-drive system. The capacity of the test-bed vehicle to be configured as described is a significant advantage when measuring tractive performance, as the results obtained will be more valid due to the vehicle parameters being the same.  相似文献   

11.
Only the electron and ion gases were taken into account in all previous theories of the positive column of intermediately-low-pressure arc discharge with or without the longitudinal magnetic field, while the motion of neutral gas was neglected. In 1982, the authors[1] presented a nonlinear theory of a positive column which indicated that the rotating velocities of neutral gas and ion gas were nearly equal, and the motion of neutral gas could not be ignored. They further discussed the problem of validity of Bohm's criterion. However, some of the parameters with which the computation was worked out in Ref. [1] were not correlated to the initial discharge parameters. In the present paper, two integral relations are supplemented, so that a complete mathematical formation of the problem is given. A convergent numerical solution is obtained by iteration and the solution of Ref. [1] turns out to be the first iteration approximation. It is shown that both functions and parameters obtained by self-consistent solution differ significantly from those obtained in the first iteration approximation. According to this paper the computation can be conducted when the initial discharge parameters are given, so this method could have certain practical applications.  相似文献   

12.
Many engineering materials and foundations such as soils demonstrate nonlinear and viscoelastic behaviour. Yet, it is challenging to develop static and dynamic models of systems that include these materials and are able to predict the behaviour over a wide range of loading conditions. This research is focused on a specific example: a pinned–pinned beam interacting with polyurethane foam foundation. Two cases, when the foundation can react in tension and compression as well as only in compression, are considered. The model developed here is capable of predicting the response to static as well as dynamic forces, whether concentrated or distributed. Galerkin’s method is used to derive modal amplitude equations. In the tensionless foundation case, the contact region changes with beam motion and the estimation of the co-ordinates of the lift-off points is embedded into the solution procedure. An efficient solution technique is proposed that is capable of handling cases where there are multiple contact and non-contact regions. Depending on the loading profiles a high number of modes may need to be included in the solution and to speed up computation time, a convolution method is used to evaluate the integral terms in the model. The adaptability of the solution scheme to complicated loading patterns is demonstrated via examples. The solution approach proposed is applicable to dynamic loadings as well and in these cases the automated treatment of complicated response patterns makes the convolution approach particularly attractive. The influence of various parameters on the static response is discussed.  相似文献   

13.
A constrained theory of a Cosserat point has been developed for the numerical solution of non-linear elastic rods. The cross-sections of the rod element are constrained to remain rigid but tangential shear deformations and axial extension are admitted. As opposed to the more general theory with deformable cross-sections, the kinetic coupling equations in the numerical formulation of the constrained theory are expressed in terms of the simple physical quantities of force and mechanical moment applied to the common ends of neighboring elements. Also, in contrast with standard finite element methods, the Cosserat element uses a direct approach to the development of constitutive equations. Specifically the kinetic quantities are determined by algebraic expressions which are obtained by derivatives of a strain energy function. Most importantly, no integration is needed over the element region. A number of example problems have been considered which indicate that the constrained Cosserat element can be used to model large deformation dynamic response of non-linear elastic rods.  相似文献   

14.
Nonlinear scattering of ultrasonic waves by closed cracks subject to contact acoustic nonlinearity (CAN) is determined using a 2D Finite Element (FE) coupled with an analytical approach. The FE model, which includes unilateral contact with Coulomb friction to account for contact between crack faces, provides the near-field solution for the interaction between in-plane elastic waves and a crack of different orientations. The numerical solution is then analytically extended in the far-field based on a frequency domain near-to-far field transformation technique, yielding directivity patterns for all linear and nonlinear components of the scattered waves. The proposed method is demonstrated by application to two nonlinear acoustic problems in the case of tone-burst excitations: first, the scattering of higher harmonics resulting from the interaction with a closed crack of various orientations, and second, the scattering of the longitudinal wave resulting from the nonlinear interaction between two shear waves and a closed crack. The analysis of the directivity patterns enables us to identify the characteristics of the nonlinear scattering from a closed crack, which provides essential understanding in order to optimize and apply nonlinear acoustic NDT methods.  相似文献   

15.
IntroductionInthispaper,weconsidertheellipticsystem(1λ) -Δu=f(λ,x,u)-v  (inΩ),-Δv=δu-γv(inΩ),u=v=0(onΩ),whereΩisasmoothboundeddomaininRN(N≥2)andλisarealparameter.Thesolutions(u,v)ofthissystemrepresentsteadystatesolutionsofreactiondiffusionsystemsderivedfromseveralap…  相似文献   

16.
In the present paper, a comparative study of numerical solutions for Newtonian fluids based on the lattice‐Boltzmann method (LBM) and the classical finite volume method (FVM) is presented for the laminar flow through a 4:1 planar contraction at a Reynolds number of value one, Re=1. In this study, the stress field for LBM is directly obtained from the distribution function. The calculations of the stress based on the FVM‐data use the evaluations of velocity gradients with finite differences. The stress field for both LBM and FVM is expressed in the present study in terms of the shear stress and the first normal stress difference. The lateral and axial profiles of the velocity, the shear stress and the first normal stress difference for both methods are investigated. It is shown that the LBM results for the velocity and the stresses are in excellent agreement with the FVM results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号