首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers   总被引:1,自引:0,他引:1  
We present photoacoustic (PA) spectroscopy measurements of carbon dioxide, methanol, and ammonia. The light source for the excitation was a single-mode quantum cascade distributed-feedback laser, which was operated in pulsed mode at moderate duty cycle and slightly below room temperature. Temperature tuning resulted in a typical wavelength range of 3cm(-1)at a linewidth of 0.2cm(-1). The setup was based on a Herriott multipass arrangement around the PA cell; the cell was equipped with a radial 16-microphone array to increase sensitivity. Despite the relatively small average laser power, the ammonia detection limit was 300 parts in 10(9)by volume.  相似文献   

2.
We discuss new approaches to monolithic integration of quantum cascade lasers with resonant intersubband nonlinearities. We show that the proposed approaches can greatly enhance the performance of quantum cascade lasers and give rise to new functionalities. Examples considered include extreme frequency up-or down-conversion and wide-range electric tuning.  相似文献   

3.
太赫兹量子级联激光器研究进展   总被引:3,自引:0,他引:3  
曹俊诚 《物理》2006,35(8):632-636
太赫兹技术涉及电磁学、光电子学、半导体物理学、材料科学以及微加工技术等多个学科,它在信息科学、生物学、医学、天文学、环境科学等领域有重要的应用价值.太赫兹辐射源是太赫兹频段应用的关键器件.本文简要介绍了太赫兹电磁波的研究背景、重要特点以及潜在应用,重点讨论了太赫兹半导体量子级联激光器的工作原理和研究进展等.  相似文献   

4.
曹俊诚 《物理》2006,35(08):632-636
太赫兹技术涉及电磁学、光电子学、半导体物理学、材料科学以及微加工技术等多个学科,它在信息科学、生物学、医学、天文学、环境科学等领域有重要的应用价值.太赫兹辐射源是太赫兹频段应用的关键器件.本文简要介绍了太赫兹电磁波的研究背景、重要特点以及潜在应用,重点讨论了太赫兹半导体量子级联激光器的工作原理和研究进展等.  相似文献   

5.
High-power terahertz sources operating at room-temperature are promising for many applications such as explosive materials detection, non-invasive medical imaging, and high speed telecommunication. Here we report the results of a simulation study, which shows the significantly improved performance of room-temperature terahertz quantum cascade lasers (THz QCLs) based on a ZnMgO/ZnO material system employing a 2-well design scheme with variable barrier heights and a delta-doped injector well. We found that by varying and optimizing constituent layer widths and doping level of the injector well, high power performance of THz QCLs can be achieved at room temperature: optical gain and radiation frequency is varied from 108 cm?1 @ 2.18 THz to 300 cm?1 @ 4.96 THz. These results show that among II–VI compounds the ZnMgO/ZnO material system is optimally suited for high-performance room-temperature THz QCLs.  相似文献   

6.
The main characteristics that a sensor must possess for trace gas detection and pollution monitoring are high sensitivity, high selectivity and the capability to perform in situ measurements. The photacoustic Helmholtz sensor developed in Reims, used in conjunction with powerful Quantum Cascade Lasers (QCLs), fulfils all these requirements. The best cell response is # 1200 V W−1 cm and the corresponding ultimate sensitivity is j 3.3 × 10−10 W cm−11 Hz−11/2. This efficient sensor is used with mid-infrared QCLs from Alpes Lasers to reach the strong fundamental absorption bands of some atmospheric gases. A first cryogenic QCL emitting at 7.9 μm demonstrates the detection of methane in air with a detection limit of 3 ppb. A detection limit of 20 ppb of NO in air is demonstrated using another cryogenic QCL emitting in the 5.4 μm region. Real in-situ measurements can be achieved only with room-temperature QCLs. A room-temperature QCL emitting in the 7.9 μm region demonstrates the simultaneous detection of methane and nitrous oxide in air (17 and 7 ppb detection limit, respectively). All these reliable measurements allow the estimated detection limit for various atmospheric gases using quantum cascade lasers to be obtained. Each gas absorbing in the infrared may be detected at a detection limit in the ppb or low-ppb range.  相似文献   

7.
Fast wavelength scanning of an external-cavity quantum cascade laser (EC-QCL) has been developed using a modified Littrow-type cavity configuration. Scan rates up to 5 kHz and tuning ranges up to 7 cm−1 have been realized using folded cavity arrangement with a fast piezoactuated intracavity mirror to vary the effective diffraction grating angle. High-resolution molecular spectroscopy, limited primarily by the effective laser linewidth, has been demonstrated in pulsed and CW mode using direct absorption spectroscopy of ammonia and ethylene in the 10-μm wavelength region. A high-resolution broadband spectral scan employing mode-hop-free tuning of a set of discrete laser modes within the fast frequency scan has been developed. The method has been demonstrated by performing high-resolution broadband spectrum of ethylene under atmospheric and reduced pressures.  相似文献   

8.
We demonstrate room-temperature operation of broad-area edge-emitting photonic-crystal distributed-feedback quantum cascade lasers at λ  4.6 μm. The lasers use a weak-index perturbed third-order photonic-crystal lattice to control the optical mode in the wafer plane. Utilizing this coupling mechanism, the near-diffraction-limited beam quality with a far-field profile normal to the facet can be obtained. Single-mode operation with a signal-to-noise ratio of about 20 dB is achieved in the temperature range of 85–290 K. The single-facet output power is above 1 W for a 55 μm × 2.5 mm laser bar at 85 K in pulsed mode.  相似文献   

9.
In this study, the operating conditions to obtain complete synchronization in two quantum cascade lasers with mutual optoelectronic coupling are analyzed. Synchronization properties and the effect of parameter mismatches on synchronization quality are investigated. The present simulation shows that the complete synchronization can be realized under suitable system parameters. The results of the present simulation indicate that the significant effects of coupling strength, photon lifetime and gain stages number on the synchronization quality. On the other hand, the present results indicate that the insignificant effect of the feedback delay time, the coupling delay time and the synchronization can occur at any delay-time conditions (DTCs).  相似文献   

10.
Frequency stabilization of mid-IR quantum cascade (QC) lasers to the kilohertz level has been accomplished by use of electronic servo techniques. With this active feedback, an 8.5-microm QC distributed-feedback laser is locked to the side of a rovibrational resonance of nitrous oxide (N(2) O) at 1176.61cm (-1) . A stabilized frequency-noise spectral density of 42Hz/ radicalHz has been measured at 100 kHz; the calculated laser linewidth is 12 kHz.  相似文献   

11.
The intrinsic frequency fluctuations of two single-mode quantum cascade (QC) distributed-feedback lasers operating continuously at a wavelength of 8.5 mum are reported. A Doppler-limited rovibrational resonance of nitrous oxide is used to transform the frequency noise into measurable intensity fluctuations. The QC lasers, along with recently improved current controllers, exhibit a free-running frequency stability of 150 kHz over a 15-ms time interval.  相似文献   

12.
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.  相似文献   

13.
A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.  相似文献   

14.
A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the growth parameters,a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated.Threshold current densities as low as 0.47 kA/cm~2 in pulsed operation and 0.56 kA/cm~2 in continuous-wave(cw) operation at 293 K were achieved for this state-of-the-art QCL.A minimum power consumption of 3.65 W was measured for the QCL,uncooled,with a high-reflectivity(HR) coating on its rear facet.  相似文献   

15.
The linewidth of an external cavity quantum cascade laser is studied as a function of injection current and laser scan rate. The laser linewidth is inferred to be ca. 2.5 MHz from Lamb-dip spectra on a low pressure sample of NO and its variation with injection current is well modeled using literature values for the intrinsic material properties of the lasing medium. The laser linewidth measurements are corroborated by polarization spectroscopy studies as well as by analysis of hyperfine structure and cross-over resonances.  相似文献   

16.
Optical-feedback cavity-enhanced absorption spectroscopy is demonstrated in the mid-IR by using a quantum cascade laser (emitting at 4.46 μm). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity field turns out to be particularly advantageous in this spectral range: It allows strong cavity transmission, which compensates for low light sensitivity, especially when using room-temperature detectors. We obtain a noise equivalent absorption coefficient of 3 × 10(-9)/cm for 1 s averaging of spectra composed by 100 independent points. At 4.46 μm, this yields a detection limit of 35 parts in 10(12) by volume for N(2)O at 50 mbar, corresponding to 4 × 10(7) molecules/cm(3), or still to 1 fmol in the sample volume.  相似文献   

17.
Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (∼ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (∼ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated. PACS  42.55.Px; 42.60.-v; 42.62.Fi; 07.07.Df  相似文献   

18.
19.
20.
A theory is developed for steady-state single-mode lasing in coherent quantum-well cascade lasers. This laser model is an example of a strictly quantum mechanical problem in which approximate kinetic approaches are not used to account for dissipative scattering processes. Exact wave functions are found for the system in weak and strong electromagnetic fields, so that the output power and frequency can be determined as functions of the coherent pump current and system parameters. It is shown that for pumping by monoenergetic electrons the power has a nonlinear (root) dependence and tends to saturate in strong fields. It is predicted that the coherent pumping efficiency may be increased by adjusting the energy of the pump electrons, which will lead to a linear power dependence, a high efficiency, and low threshold currents. A population inversion is found not be a necessary condition for lasing in the coherent laser. In particular, in the high field regime the population of the lower level exceeds that of the upper, while in the optimally adjusted regime they are the same. Zh. éksp. Teor. Fiz. 112, 483–498 (August 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号