首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report that copper thin films deposited on top of graphene oxide (GO) serve as an effective catalyst to reduce GO sheets in a diluted hydrogen environment at high temperature. The reduced GO (rGO) sheets exhibit higher effective field-effect hole mobility, up to 80 cm(2) V(-1) s(-1), and lower sheet resistance (13 kΩ □(-1)) compared with those reduced by reported methods such as hydrazine and thermal annealing. Raman and XPS characterizations are addressed to study the reduction mechanism on graphene oxide underneath copper thin films. The level of reduction in rGO sheets is examined by Raman spectroscopy and it is well correlated with hole mobility values. The conductivity enhancement is attributed to the growth of the graphitic domain size. This method is not only suitable for reduction of single GO sheets but also applicable to lower the sheet resistance of Langmuir-Blodgett assembled GO films.  相似文献   

2.
Lateral dimension-dependent antibacterial activity of graphene oxide sheets   总被引:2,自引:0,他引:2  
Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (<10 μg/mL). In contrast, when incubating with small GO sheets up to 4 h, the inactivation rate of E. coli cells continues increasing. The increase of small GO sheet concentration also results in persistent increases in their antibacterial activity. In this study, GO sheets with different lateral sizes are all well dispersed, and their oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.  相似文献   

3.
Graphene oxide (GO) is an amphiphilic soft material, which can accumulate at the water–air interface. However, GO sheets diffuse slowly in the aqueous phase because of their large size. It is still challenging to form high quality GO films in a controllable and simple way. In this study, we showed that GO sheets can quickly migrate to the water–air interface and form thin films when a suitable amount of acetone is directly mixed with a GO aqueous dispersion. The film formation rate and surface coverage of GO sheets depend on the volume of acetone added, GO dispersion concentration, and formation time. Among several organic solvents, acetone has its advantage for GO film formation owing to its three properties: a nonsolvent to GO aqueous dispersions, miscible with a GO aqueous dispersion, and fast evaporation. Furthermore, we have found that the film formation also is governed by the size of GO sheets and their oxygen content. Although smaller GO sheets could migrate to the water–air interface faster, the overlapping of small GO sheets and the increase in contact resistance is not desirable. A higher oxygen content in GO sheets could also result in smaller GO sheets. Multilayer GO films can be obtained through layer‐by‐layer dip‐coating. These findings open opportunities in developing simple scalable GO film fabrication processes.  相似文献   

4.
Graphene oxide nanocolloids   总被引:2,自引:0,他引:2  
Graphene oxide (GO) nanocolloids-sheets with lateral dimension smaller than 100 nm-were synthesized by chemical exfoliation of graphite nanofibers, in which the graphene planes are coin-stacked along the length of the nanofibers. Since the upper size limit is predetermined by the diameter of the nanofiber precursor, the size distribution of the GO nanosheets is much more uniform than that of common GO synthesized from graphite powders. The size can be further tuned by the oxidation time. Compared to the micrometer-sized, regular GO sheets, nano GO has very similar spectroscopic characteristics and chemical properties but very different solution properties, such as surface activity and colloidal stability. Due to higher charge density originating from their higher edge-to-area ratios, aqueous GO nanocolloids are significantly more stable. Dispersions of GO nanocolloids can sustain high-speed centrifugation and remain stable even after chemical reduction, which would result in aggregates for regular GO. Therefore, nano GO can act as a better dispersing agent for insoluble materials (e.g., carbon nanotubes) in water, creating a more stable colloidal dispersion.  相似文献   

5.
功能型单层石墨烯的热剥离法制备及其超电容性能   总被引:1,自引:0,他引:1  
以氧化石墨(GO)作为前驱体,在两种不同热剥离温度下制备了两类功能型单层石墨烯.其中第一类功能型单层石墨烯通过在较低温度及空气气氛下热剥离GO制备;第二类功能型单层石墨烯通过在氮气保护下高温热剥离GO得到;利用氮气吸附-脱附方法测定了两类样品的比表面积,利用电化学测试方法分析了其超电容性能.结果表明,通过低温热剥离的方式即可以有效剥离GO;两类样品均具有较高的BET比表面积.低温热剥离GO所制备的功能型单层石墨烯在2 mol/L KOH体系中的最大比电容值约为220 F/g;而通过高温热剥离GO所制备的功能型单层石墨烯虽然同样具有较高的BET比表面积,但其最大比电容值下降至约150 F/g.这表明通过低温热剥离GO所制备的功能型单层石墨烯具有更优异的超电容性能.  相似文献   

6.
The structural influence of graphene oxide (GO) on laser desorption/ionization mass spectrometry (LDI‐MS) analysis of small molecules was systematically investigated by using size‐fractionated GO. For fractionation of GO, pH‐assisted centrifugation, sequential vacuum filtration, and sonochemical cutting processes were employed and the size‐fractionated GO was thoroughly characterized to understand their size‐dependent optochemical properties. Then, the fractionated GO was applied to the analysis of various small molecules by LDI‐MS to investigate the relationship between their optochemical properties and LDI‐MS performance. We found that large GO sheets (>0.5 μm) were more prone to fragmentation under laser irradiation during LDI‐MS analysis than small GO sheets (<0.5 μm). In this regard, the LDI‐MS analysis efficiency of various small molecules was significantly improved by using nanosized GO (NGO) as a matrix without background interference. In particular, NGO was successfully applied to the sensitive detection of hydrophobic pollutant molecules without requiring any surface‐functionalization, enrichment, and separation process. Therefore, the present study could provide important basic information and be a practical tool for the development of simple and efficient LDI‐MS platforms by using GO derivatives.  相似文献   

7.
Graphene oxide (GO) can be viewed as an amphiphilic soft material, which form thin films at organic solvent-water interfaces. However, organic solvent evaporation provides little driving force, which results in slow GO transfer in aqueous phase, thus dawdling GO film formation processes for various potential applications. We present an ethanol-assisted self-assembly method for the quick formation of GO or GO-based composite thin films with tunable composition, transmittance, and surface resistivity at pentane-water interface. The thickness of pure GO and reduced GO (rGO) films ranging from ~1 nm to more than 10 nm can be controlled by the concentration of GO in bulk solution. The transmittance of rGO films can be tuned from 72% to 97% at 550 nm while the surface resistivity changes from 8.3 to 464.6 kΩ sq(-1). Ethanol is essential for achieving quick formation of GO thin films. When ethanol is injected into GO aqueous dispersion, it serves as a nonsolvent, compromising the stability of GO and providing driving force to allow GO sheets aggregate at the water-pentane interface. On the other hand, neither the evaporation of pentane nor the mixing between ethanol and water provides sufficient driving forces to allow noteworthy amount of GO sheets to migrate from the bulk aqueous phase to the interface. This method can also be extended to prepare GO-based composites thin films with tunable composition, such as GO/single walled carbon nanotube (SWCNT) composite thin films investigated in this work. Reduced GO/SWCNT composite films show much lower surface resistivity compared to pure rGO thin films. This ethanol-assisted self-assembly method opens opportunities to design and fabricate new functional GO-based hybrid materials for various potential applications.  相似文献   

8.
Exfoliated graphene oxide (GO) sheets with hydrophilic functional groups on the surface were prepared by the oxidation of graphite. Because of the hydrophilic groups on the sheets and the hydrophobic carbon surface, GO sheets were located at the oil-water interface and could be used as a stabilizer in Pickering emulsions. After the Pickering emulsion polymerization of styrene, PS colloidal particles with GO sheets on the surface were prepared. The size of the GO sheets exerts an important influence on the preparation of PS colloidal particles. Small GO sheets located at the liquid-liquid interface and GO-stabilized PS colloidal particles were prepared; however, for large GO sheets, smaller PS colloidal particles prepared on the GO surface were observed. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the colloidal particles. TEM, SEM, and XPS results all suggest the successful preparation of GO-stabilized PS colloidal particles.  相似文献   

9.
Highly flexible nanocomposite films of nanocrystalline cellulose acetate (NCCA) and graphene oxide (GO) were synthesized by combining NCCA and GO sheets in a well-controlled manner. By adjusting the GO content, various NCCA/GO nanocomposites with 0.3–1 wt% GO were obtained. Films of these nanocomposites were prepared using the solvent casting method. Microscopic and X-ray diffraction (XRD) measurements demonstrated that the GO nanosheets were uniformly dispersed in the NCCA matrix. Mechanical properties of the composite films were also studied. The best GO composition of the samples tested was 0.8 wt%, giving tensile strength of 157.49 MPa, which represents a 61.92 % enhancement compared with NCCA. On the other hand, the composite films showed improved barrier properties against water vapor. This simple process for preparation of NCCA/GO films is attractive for potential development of high-performance films for electrical and electrochemical applications.  相似文献   

10.
石墨烯/银复合薄膜的制备及表征   总被引:3,自引:0,他引:3  
采用静电自组装技术,通过交替沉积聚(二烯丙基二甲基氯化铵)(PDDA)(或硝酸银)和氧化石墨烯,制备氧化石墨烯/PDDA薄膜和氧化石墨烯/硝酸银复合薄膜。然后在600℃下通入氩气和氢气进行气氛还原得到石墨烯薄膜和石墨烯/银复合薄膜。采用AFM、SEM、XPS、UV-Vis以及四探针电阻仪等对薄膜结构及性质进行表征。结果表明,通过静电自组装法可以获得生长均匀的薄膜。对比于相同自组装次数的石墨烯薄膜,石墨烯/银复合薄膜具有更好的透光性和更低的薄膜方块电阻。在λ=500 nm时,四层石墨烯/银复合薄膜的透过率为85%左右,而石墨烯薄膜的透过率为72%左右;石墨烯薄膜的方阻为161.39 kΩ.□-1,而石墨烯/银复合薄膜的方阻为99.11 kΩ.□-1。  相似文献   

11.
Polystyrene particles “armoured” with nanosized graphene oxide (GO) sheets have been prepared by aqueous miniemulsion polymerization of styrene, exploiting the amphiphilic properties of GO in the absence of conventional surfactants. The nanoscale GO sheets were prepared from graphite nanofibers of diameter approximately 100 nm based on a novel procedure, thus effectively ensuring the absence of larger sheets. Polymerization proceeded to high conversion with minor coagulation, with final number‐average particle diameters of approximately 500 nm, but relatively broad particle size distributions. Scanning electron microscopy analysis revealed particles with a textured surface, consistent with the expected morphology. Interestingly, analysis of GO sheets recovered from the polymerization revealed that the GO sheets are partially reduced during the polymerization—approximately 50% of the initial carboxyl groups of the GO were lost, consistent with some loss in colloidal stability at high conversion. The overall approach offers a convenient and attractive synthetic route to novel graphene‐based polymeric nanostructures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
宋义虎  郑强 《高分子科学》2013,31(3):399-406
Colloidal suspensions of glutaraldehyde (GA) crosslinked or grafted graphene oxide (GO) sheets were fabricated by simply tailoring the feed sequence. The different structures were confirmed by Fourier transform infrared spectra and X-ray diffraction. As demonstration of the utilities, the different colloidal suspensions were used to prepare free-standing papers by flow-directed filtration and poly(vinyl alcohol) (PVA)-based nanocomposite films by casting. Free-standing papers from GA crosslinked GO sheets exhibited better mechanical properties than unmodified GO paper, while nanocomposite films from GA grafted GO exhibit higher tensile strength and Young’s modulus.  相似文献   

13.
Films of a few layers in thickness of reduced graphite oxide (RGO) sheets functionalized by the zwitterionic surfactant N‐dodecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propanesulfonate (DDPS) are obtained by using the Langmuir–Blodgett method. The quality of the RGO sheets is checked by analyzing the degrees of reduction and defect repair by means of X‐ray photoelectron spectroscopy, atomic force microscopy (AFM), field‐emission scanning electron microscopy (SEM), micro‐Raman spectroscopy, and electrical conductivity measurements. A modified Hummers method is used to obtain highly oxidized graphite oxide (GO) together with a centrifugation‐based method to improve the quality of GO. The GO samples are reduced by hydrazine or vitamin C. Functionalization of RGO with the zwitterionic surfactant improves the degrees of reduction and defect repair of the two reducing agents and significantly increases the electrical conductivity of paperlike films compared with those prepared from unfunctionalized RGO.  相似文献   

14.
We report an effective method for bulk obtaining exfoliated graphene oxide (GO) solids from their aqueous solutions, which were prepared from nature graphite by an oxidation method. Tyndall effect proved that GO solution has a colloidal nature. Different flocculants were used to coagulate GO colloidal, and it was found that NaOH had the most obvious coagulation effect to GO. Transmission electron microscopy, X‐ray diffraction and atomic force microscopy analysis demonstrated that there were a large number of complete few‐layer GO sheets with thickness of about 0.8 nm, and the surfaces were very smooth, almost free of impurities. Liquid state 13C NMR and Fourier transformation infrared spectra showed the presence of abundant benzene carboxylic, hydroxyl and epoxide groups in the basal planes of GO. The graphene materials reduced from GO solids had good electrical conductivity. Our work explored a simple and effective route to extract GO from their solution, which is the most important to GO and graphene researches and applications.  相似文献   

15.
This study describes the polymerization of graphene oxide (GO) nanosheet to reduced‐GO‐aminoclay (RGC) by covalent functionalization of chemically reactive epoxy groups on the basal planes of GO with amine groups of magnesium phyllosilicate clay (known as aminoclay). The resulting RGC sheets were characterized and applied to support platinum nanostructures at toluene/water interface. Pt nanoparticles (NPs) with diameters about several nanometers were adhered to RGC sheets by chemical reduction of [PtCl2(cod)] (cod = cis,cis‐1,5‐cyclooctadiene) complex. Catalytic activity of Pt NPs thin films were investigated in the methanol oxidation reaction. Cyclic voltammetry results exhibit that the Pt/reduced‐GO (RGO) and Pt/RGC thin films showed improved catalytic activity in methanol oxidation reaction in comparison to other Pt NPs thin films, demonstrating that the prepared Pt/RGO and Pt/RGC thin films are promising catalysts for direct methanol fuel cell.  相似文献   

16.
以磷酸铵和氧化石墨烯悬浊液的混合液为电解液,采用电化学共沉积法制备了Ag3PO4基GO/Ag3PO4/Ni复合薄膜。运用扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线衍射(XRD)、拉曼光谱(Raman)和紫外可见漫反射光谱(UV-Vis DRS)等对其形貌、物相和光谱特性进行分析。最佳工艺制备的GO/Ag3PO4/Ni复合薄膜呈现出GO包覆在直径为100 nm左右的Ag3PO4纳米球外的表面形貌。GO片与Ag3PO4纳米球之间存在强电荷相互作用。与单独的Ag3PO4纳米球相比,GO片的附着导致带隙缩小,可见光区的吸收率增强。可见光下考察了复合薄膜降解罗丹明B的光催化活性和稳定性,并利用荧光光谱和捕获剂法对薄膜的光催化机理进行了探索。结果表明,GO片的加入不仅显著提高了Ag3PO4的光催化活性,而且提高了Ag3PO4的结构稳定性。光催化降解罗丹明B 60 min时,GO/Ag3PO4/Ni复合薄膜的降解率是Ag3PO4/Ni薄膜的1.32倍。在保持薄膜光催化活性基本不变的前提下可循环使用7次。GO优异的电荷传导性能,以及Ag3PO4纳米球与GO片之间的正协同效应是提高复合薄膜光催化性能的主要原因。  相似文献   

17.
Graphene oxide–polydopamine–Au (GO–PDA–Au) nanoscrolls were prepared by rolling up GO–PDA–Au sheets through a simple lyophilization method. The structure of GO–PDA–Au nanoscrolls and GO–PDA–Au sheets were compared by powder X‐ray diffraction, Raman spectra, transmission electron microscopy, and scanning electron microscopy. The results demonstrated that the heterogeneous GO–PDA–Au nanoscrolls were synthesized successfully. Polydopamine (PDA) attached at the surface of GO sheets served as binding reagents to anchor and disperse Au nanoparticles (NPs). The electrocatalytic activity of methanol with GO–PDA–Au nanoscrolls and GO–PDA–Au sheets as electrodes were conducted. Compared to GO–PDA–Au sheets, GO–PDA–Au nanoscrolls showed better electrocatalytic activity and electrochemical stability owing to their scrolled structure. This article provides a simple and effective method to prepare GO nanoscrolls containing metal NPs that broadens the applications of the graphene‐based materials in optical, magnetic, and catalytic fields.  相似文献   

18.
Hierarchical graphene oxide (GO)‐TiO2 composite microspheres with different GO/TiO2 mass ratios were successfully prepared by mixing GO and TiO2 microspheres under ultrasonic conditions. Ultrasonication helped the GO and TiO2 microsphere to uniformly mix on the microscale. The results showed that the GO‐TiO2 composites that were prepared by ultrasonic mixing exhibited significantly higher hydrogen‐evolution rates than those that were synthesized by simple mechanical grinding, owing to synergetic effects, including enhanced light absorption and scattering, as well as improved interfacial charge transfer because of the excellent contact between the GO sheets and TiO2 microspheres. In addition, GO‐TiO2‐3 (3 wt. % GO) showed the highest hydrogen‐generation rate (305.6 μmol h?), which was about 13 and 3.3‐times higher than those of TiO2 microsphere and GO‐P25 (with 3 wt. % GO), respectively. Finally, a tentative mechanism for hydrogen production is proposed and supported by photoluminescence and transient photocurrent measurements. This work highlights the potential applications of GO‐TiO2 composite microspheres in the field of clean‐energy production.  相似文献   

19.
Proton conductivities of layered solid electrolytes can be improved by minimizing strain along the conduction path. It is shown that the conductivities (σ) of multilayer graphene oxide (GO) films (assembled by the drop‐cast method) are larger than those of single‐layer GO (prepared by either the drop‐cast or the Langmuir‐Blodgett (LB) method). At 60 % relative humidity (RH), the σ value increases from 1×10?6 S cm?1 in single‐layer GO to 1×10?4 and 4×10?4 S cm?1 for 60 and 200 nm thick multilayer films, respectively. A sudden decrease in conductivity was observed for with ethylenediamine (EDA) modified GO (enGO), which is due to the blocking of epoxy groups. This experiment confirmed that the epoxide groups are the major contributor to the efficient proton transport. Because of a gradual improvement of the conduction path and an increase in the water content, σ values increase with the thickness of the multilayer films. The reported methods might be applicable to the optimization of the proton conductivity in other layered solid electrolytes.  相似文献   

20.
Proton conductivities of layered solid electrolytes can be improved by minimizing strain along the conduction path. It is shown that the conductivities (σ) of multilayer graphene oxide (GO) films (assembled by the drop‐cast method) are larger than those of single‐layer GO (prepared by either the drop‐cast or the Langmuir‐Blodgett (LB) method). At 60 % relative humidity (RH), the σ value increases from 1×10−6 S cm−1 in single‐layer GO to 1×10−4 and 4×10−4 S cm−1 for 60 and 200 nm thick multilayer films, respectively. A sudden decrease in conductivity was observed for with ethylenediamine (EDA) modified GO (enGO), which is due to the blocking of epoxy groups. This experiment confirmed that the epoxide groups are the major contributor to the efficient proton transport. Because of a gradual improvement of the conduction path and an increase in the water content, σ values increase with the thickness of the multilayer films. The reported methods might be applicable to the optimization of the proton conductivity in other layered solid electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号