首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new software-controlled time-based system for sample or reagent introduction in process flow injection analysis was developed. By using a multi-syringe burette coupled with one multi-port selection valve, the time-based injection of precise known volumes was accomplished. Characteristics and performance of the injection system were studied by injecting an indicator in a buffered carrier. Two multi-syringe time-based injection (MS-TBI) systems were implemented: first, the injection of a sample in a multiple-channel manifold where the sample would sequentially merge and react with different reagents, and second, the sequential injection of several solutions (sample and reagents) into a particular flowing stream. The first system was applied to the spectrophotometric determination of nickel(II) in diluted samples from the acidic nickel ore leaching process, by using ammonium citrate as carrier, a saturated solution of iodine as oxidizing agent and alkaline dimethylglyoxime as chromogenic reagent. The sampling frequency attained was 57 h-1. Determinations on process samples compared well at the 95% confidence level with the reference values obtained by ICP-OES. The second time-based injection system was applied to the speciation of iron. Total iron and iron(II) concentrations were separately and sequentially determined using 1,10-phenanthroline in acetic buffer medium as reagent. The developed manifold allowed the optional use of two different carrier solutions, containing or not containing ascorbic acid, for performing the separate determinations. Also, in the sequential procedure, plugs of reducing carrier were alternatively intercalated before the sample injections used for total iron determinations. Sampling frequencies of 68 injections per hour were routinely used. Accuracy was assessed by analyzing synthetic known mixtures of Fe(III) and Fe(II) standard solutions. Recoveries of 98-100.5% with a maximum relative standard deviation of 3.6% were found. Results obtained for various samples of fertilizers agreed well with those attained by the standard batch procedure.  相似文献   

2.
《Analytica chimica acta》2002,455(1):149-157
A time-based multisyringe flow injection procedure with spectrofluorimetric detection is proposed in this paper for the determination of aluminium in drinking water. The flow methodology is based on the simultaneous or sequential injection of sample and chelating reagent (viz. 8-hydroxyquinoline-5-sulphonic acid) plugs using a multicommutation approach so that three successive injections may be performed with a sole displacement of the piston driver bar of the burette. Thus, an injection throughput as high as 154 h−1 is achieved by sampling a 182 μl sample zone. In order to enhance the luminescence, the reaction is carried out in micellar medium using hexadecyltrimethylammonium chloride as surfactant. The influence of geometric and hydrodynamic variables as well as several parameters such as multicommutation timing, ligand and surfactant concentration and reagent pH was assessed.Under the selected working conditions, a linear dynamic range from 10 to 500 μg l−1 Al(III), a 3σ detection limit of 0.5 μg l−1 and a coefficient of variation of 0.6% at the 30 μg l−1 level were obtained. The analytical features were compared with those reported in previous flow injection and sequential injection methods. The multisyringe technique was successfully applied to the determination of aluminium in drinking water at low mineralisation levels, validating the results by inductively coupled plasma atomic emission spectrometry.  相似文献   

3.
Summary In this paper the authors report on several methods for the direct determination of EDTA and indirect determination of iron(III), based on the inhibition effect of EDTA on the catalytic action of copper (II) on the oxidation of 2,2-dipyridyl ketone hydrazone by hydrogen peroxide and on the decrease of this inhibition effect in the presence of Fe(III), respectively. These methods allow the determination of EDTA in the ranges of 0.4–2.0 g · ml–1 and 0.2–1.0 g · ml–1 for the normal and reversed FIA modes, respectively, and of 40–240 ng · ml–1 for Fe(III) by reversed FIA.
Katalytisch-fluorimetrische Bestimmung von EDTA und Eisen(III) durch FließinjektionsanalyseInhibitionsmethoden
Zusammenfassung Verfahren zur direkten Bestimmung von EDTA sowie zur indirekten Bestimmung von Eisen(III) werden beschrieben. Sie beruhen auf der Inhibitorwirkung von EDTA auf den katalytischen Effekt von Kupfer(II) bei der Oxidation von 2,2-Dipyridylketonhydrazon mit Wasserstoffperoxid bzw. auf der Schwächung dieser Inhibitorwirkung in Gegenwart von Eisen(III). Es ist mit diesen Methoden möglich, EDTA im Bereich von 0,4–2,0 g/ml (normale FIA) bzw. 0,2–1,0 g/ml (umgekehrte FIA) und Eisen im Bereich von 40–240 ng/ml (umgekehrte FIA) zu bestimmen.
  相似文献   

4.
The direct spectrophotometric determination of iron(III) and iron(II) by flow injection analysis with acetohydroxamic acid and 1,10-phenanthroline as reagents is reported. The working ranges are 0.5–10 and 10–60 mg l?1, respectively. Results obtained for synthetic mixtures of Fe(III) and Fe(II) and for acid extracts of haematite samples were accurate. Interference studies indicate that the method is highly selective.  相似文献   

5.
A novel optical fibre reflectance sensor coupled to a multisyringe flow injection system (MSFIA) for the determination and speciation analysis of iron at trace level using chelating disks (iminodiacetic groups) is proposed. Once iron(III) has been retained onto a chelating disk, an ammonium thiocyanate stream is injected in order to form the iron(III)-thiocyanate complex which is spectrophotometrically detected at 480 nm. Iron(III) is eluted with 2 M hydrochloric acid so that the chelating disk is regenerated for subsequent experiments. The determination of total iron is achieved by the on-line oxidation of iron(II) to iron(III) with a suitable hydrogen peroxide stream.A mass calibration was feasible in the range from 0.001 to 0.25 μg. The detection limit (3sb/S) was 0.001 μg. The repeatability (RSD), calculated from nine replicates using 1 ml injections of a 0.1 mg/l concentration, was 2.2%. The repeatability between five chelating disks was 3.6%. The applicability of the proposed methodology in fresh and seawater samples has been proved.The proposed technique has been validated by replicate analysis (n = 4) of certified reference materials of water with satisfactory results.  相似文献   

6.
A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 μg L−1 were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 μg L−1 (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).  相似文献   

7.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

8.
Summary Two flow injection analysis systems have been worked out for the simultaneous determination of Fe(III), Fe(II), and Ti(IV) based on the kinetic spectrophotometry with Tiron. The first system uses a silver reductor column and a single detector with two flow cells aligned in the same optical path to yield two peaks corresponding to (a) Ti(IV)-Tiron and (b) Ti(IV) plus total iron(III)-Tiron complexes. An another sample injection without the silver column yields a single peak which corresponds to Ti(IV) plus Fe(III)-Tiron complexes. With the two sample aliquot injections the system permits simultaneous determinations with throughput of 30 samples/h in the g to several tens g range of each species. The second system is a multidetection system with or without the silver reductor column using the same spectrophotometry with Tiron, in which the entrapment of the sample plug into a closed system allows its repetitive passage through a single detector. With the advantage of much simpler instrumentation, the system permits 6 samples/h to be analyzed for the three metal species with somewhat lower precisions than the first system.  相似文献   

9.
Titanium(III) and iron(II) are shown to stimulate luminol chemiluminescence in the absence of added oxidant. Down to 10?9 M titanium can be determined. Both metal ions also produce chemiluminescence when injected into 0.1 M carbonate buffer (pH 10.4), allowing >10?6 M of each to be determined. The intensities are greater when the solutions have been deoxygenated by a stream of nitrogen, and when rhodamine B is used as a sensitizer.  相似文献   

10.
A simple and low cost flow injection (FI) system with bead injection (BI) was developed for determination of low concentration (mumol l(-1)) of iron in water samples. Chelex-100 chelating resin beads, trapped in a jet ring cell, were employed. The intensity of red complex of 1,10-phenanthroline with Fe(2+) was monitored using colorimetric detector with a LED green light source. Amount of total Fe (Fe(2+) and Fe(3+)) and Fe(2+) can be evaluated by with and without reduction of Fe(3+) using ascorbic acid. Lowest detectable levels of Fe(2+) were 0.90 and 0.45 mumol l(-1) for sample loading time of 3 and 5 min, respectively. Working range was up to 3.90 mumol l(-1) using 0.3% w/v 1, 10-phenanthroline. Percent recoveries of spiked water samples (0.90-2.33 mumol l(-1) of Fe(2+)) were 100-110%.  相似文献   

11.
A simple and rapid flow-injection spectrophotometric method for the determination of iron(III) and total iron is proposed. The method is based on the reaction between iron(III) and O-acetylsalicylhydroxamic acid (AcSHA) in a 2 % methanol solution resulting in an intense violet complex with strong absorption at 475 nm. Optimum conditions for the determination of iron(III) and the interfering ions were tested. The relative standard deviation for the determination of 5 μg L−1 iron(III) was 0.85 % (n = 10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 0.5 μg L−1, both based on the injection volumes of 20 μL. The method was successfully applied in the determination of iron(III) and total iron in water and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F and also by the AAS method.  相似文献   

12.
Ruengsitagoon W 《Talanta》2008,74(5):1236-1241
A simple reversed flow injection colourimetric procedure for determining iron(III) was proposed. It is based on the reaction between iron(III) with chlortetracycline, resulting in an intense yellow complex with a suitable absorption at 435 nm. A 200 μl chlortetracycline reagent solution was injected into the phosphate buffer stream (flow rate 2.0 ml min−1) which was then merged with iron(III) standard or sample in dilute nitric acid stream (flow rate 1.5 ml min−1). Optimum conditions for determining iron(III) were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 0.5–20.0 μg ml−1. The detection limit (3σ) and the quantification limit (10σ) were 0.10 and 0.82 μg ml−1, respectively. The relatives standard deviation of the proposed method calculated from 12 replicate injections of 2.0 and 10.0 μg ml−1 iron(III) were 0.43 and 0.59%, respectively. The sample throughput was 60 h−1. The proposed method has been satisfactorily applied to the determination of iron(III) in natural waters.  相似文献   

13.
Feres MA  Reis BF 《Talanta》2005,68(2):422-428
In this work, a downsized flow set up designed based on multicommutation concept for photometric determination of iron(II)/iron(III) and nitrite/nitrate is surface water is described. The flow system network comprised a set of three-way solenoid valves, reaction coil and a double-channel flow cell, which were nested in order to obtain a compact and small-size instrument. To accomplish the downsizing requirement light source (LED) and radiation detection (phototransistor) were coupled to the flow cell. In order to demonstrated the effectiveness of the system, the photometer methods based on Griess reaction and 1-10-phenantroline for nitrite and iron(II) determination, respectively, were selected. Under computer control the set up provided facilities to handle four reagent solutions employing a single pumping channel, thus permitting also the determination of nitrate and iron(III) after its reduction to nitrite and to iron(II), respectively. The overall system performance was demonstrated working several days running standard solution, no significant variation of base line, linear response range and slop (less than 1%) were observed. The usefulness of the downsized system was ascertained by analyzing a set of surface water. Aiming to access the accuracy sample were also analyzed employing reference procedures and no significant difference at 95% confidence level were observed for the four analytes. Other profitable features such as analytical throughput of 40 determination per hour; relative standard deviation of 1%; linear response range between 50 and 300 μg l−1 for nitrite and nitrate, 0.5-6.0 mg l−1 iron(II) and iron(III); low reagent consumption 75 μg for nitrate/nitrite and 0.6 mg for iron(II)/iron(III) per determination; and 2.4 ml waste generation per determination were also achieved.  相似文献   

14.
A simple and rapid solid-phase spectrophotometric procedure to determine free Fe(III) in environmental and biological samples is proposed. In particular, a deferoxamine (DFO) self assembled monolayer on mesoporous silica (DFO SAMMS) is developed and here applied as a sensor for iron(III). The solid product became brownish when put in contact with iron(III) solutions; so an immediate application as colorimetric sensor is considered. In order to optimize the DFO SAMMS synthesis and to obtain the best product for iron(III) sensing, a factorial experimental design is performed selecting the maximum absorption at 425 nm as response. The robustness of the spectrophotometric method is also proved.  相似文献   

15.
In this work a downscaled multicommuted flow injection analysis setup for photometric determination is described. The setup consists of a flow system module and a LED based photometer, with a total internal volume of about 170 μL. The system was tested by developing an analytical procedure for the photometric determination of iodate in table salt using N,N-diethyl-henylenediamine (DPD) as the chromogenic reagent. Accuracy was accessed by applying the paired t-test between results obtained using the proposed procedure and a reference method, and no significant difference at the 95% confidence level was observed. Other profitable features, such as a low reagent consumption of 7.3 μg DPD per determination; a linear response ranging from 0.1 up to 3.0 m IO3, a relative standard deviation of 0.9% (n = 11) for samples containing 0.5 m IO3, a detection limit of 17 μg L−1 IO3, a sampling throughput of 117 determination per hour, and a waste generation 600 μL per determination, were also achieved.  相似文献   

16.
Nonova D  Lihareva N 《Talanta》1976,23(6):439-443
The copper(II)-EDTA-PAR system is proposed as indicator for direct EDTA titration of 0.2-20 mg of iron(III) in acetic acid medium. The precision and accuracy have been evaluated by spectrophotometric titration. Microtitrations determine down to 10 mug of iron. A logarithmic concentration diagram has been constructed to present the complex equilibria involved. In an interference study the masking agent ammonium fluoride was found to improve the end-point detection. The method has been applied successfully to practical standard samples and compares favourably with other EDTA titrations of iron.  相似文献   

17.
Kass M  Ivaska A 《Talanta》2002,58(6):1131-1137
A procedure for determination of concentrations of iron(III) and total iron by sequential injection analysis is described. The method is based on the strong blue-colored complexes formed between iron(III) and tiron. The absorbance of the complexes is measured spectrophotometrically at 635 nm. Oxidation of iron(II) and masking of interfering fluoride is simultaneously done by injecting one zone of hydrogen peroxide and one of thorium(IV) between the sample and reagent zones. Concentration of iron(III) and total iron, in the range 0.002–0.026 M, in diluted samples from a pickle bath were determined. The relative standard deviation was 0.4% (n=7). The method was also used in a pilot plant of a zinc process for determination of iron(III) in the range 0.2–3.0 g l−1. The sample throughput is approximately 17 samples per hour, including three repetitive determinations of each sample.  相似文献   

18.
Flow-injection procedures for the simultaneous spectrophotometric determination iron(II) and iron(III), relying on the different kinetic-catalytic behaviour of iron(II) and iron(III) in the redox reaction between leucomalachite green and peroxodisulphate with and without the presence of the activator 1,10-phenanthroline, are described. Exploiting the fact that one of the chemical reactions is very rapid whereas the other one is comparatively slower, two experimental procedures are presented. In the first, two individual zones of sample solution are injected simultaneously into separate carrier streams of reagent in a two-line system. Taking advantage of the different residence times of the samples in the manifold lines, the resulting colour formation is measured by a single optical detector with two separate flow cells aligned within the same optical path. The second approach is based on the use of a single-line flow-injection system, exploiting the formation of a double peak as a result of injecting a large sample zone, sandwiched between reagent zones of appropriate composition. In this manner two time-resolved signals for the kinetically governed processes can be obtained and thus used for quantification of the individual species.  相似文献   

19.
The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO3) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH ≅ 3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05–4.0 and 0.09–6.0 mg L−1, respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.  相似文献   

20.
Poachanee Norfun 《Talanta》2010,82(1):202-207
A reverse flow injection analysis (rFIA) spectrophotometric method has been developed for the determination of aluminium(III). The method was based on the reaction of Al(III), quercetin and cetyltrimethylammonium bromide (CTAB), yielding a yellow colored complex in an acetate buffer medium (pH 5.5) with absorption maximum at 428 nm. The rFIA parameters that influence the FIA peak height have been optimized in order to obtain the best sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and Al(III) concentrations were obtained over the concentration range of 0.02-0.50 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.007 and 0.024 mg L−1, respectively. The repeatability was 1.10% (n = 11) for 0.2 mg L−1 Al(III). The proposed method was applied to the determination of Al(III) in tap water samples with a sampling rate of 60 h−1. Results obtained were in good agreement with those obtained by the official ICP-MS method at the 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号