首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The seamless-L_0(SELO) penalty is a smooth function on [0, ∞) that very closely resembles the L_0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection. In this paper, we first generalize SELO to a class of penalties retaining good features of SELO, and then propose variable selection and estimation in linear models using the proposed generalized SELO(GSELO) penalized least squares(PLS) approach. We show that the GSELO-PLS procedure possesses the oracle property and consistently selects the true model under some regularity conditions in the presence of a diverging number of variables. The entire path of GSELO-PLS estimates can be efficiently computed through a smoothing quasi-Newton(SQN) method. A modified BIC coupled with a continuation strategy is developed to select the optimal tuning parameter. Simulation studies and analysis of a clinical data are carried out to evaluate the finite sample performance of the proposed method. In addition, numerical experiments involving simulation studies and analysis of a microarray data are also conducted for GSELO-PLS in the high-dimensional settings.  相似文献   

2.
The selection of a best-subset regression model from a candidate family is a common problem that arises in many analyses. The Akaike information criterion (AIC) and the corrected AIC (\(\text {AIC}_c\)) are frequently used for this purpose. AIC and \(\text {AIC}_c\) are designed to estimate the expected Kullback–Leibler discrepancy. For best-subset selection, both AIC and \(\text {AIC}_c\) are negatively biased, and the use of either criterion will lead to the selection of overfitted models. To correct for this bias, we introduce an “improved” AIC variant, \(\text {AIC}_i\), which has a penalty term evaluated using Monte Carlo simulation. A multistage model selection procedure \(\text {AIC}_{\text {aps}}\), which utilizes \(\text {AIC}_i\), is proposed for best-subset selection. Simulation studies are compiled to compare the performances of the different model selection methods.  相似文献   

3.
We propose a variable selection procedure in model-based clustering using multilocus genotype data. Indeed, it may happen that some loci are not relevant for clustering into statistically different populations. Inferring the number K of clusters and the relevant clustering subset S of loci is seen as a model selection problem. The competing models are compared using penalized maximum likelihood criteria. Under weak assumptions on the penalty function, we prove the consistency of the resulting estimator ${(\widehat{K}_n, \widehat{S}_n)}$ . An associated algorithm named Mixture Model for Genotype Data (MixMoGenD) has been implemented using c++ programming language and is available on http://www.math.u-psud.fr/~toussile. To avoid an exhaustive search of the optimum model, we propose a modified Backward-Stepwise algorithm, which enables a better search of the optimum model among all possible cardinalities of S. We present numerical experiments on simulated and real datasets that highlight the interest of our loci selection procedure.  相似文献   

4.
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas.Variable selection for these models consists of two components:model selection for non-parametric components and selection of significant variables for the parametric portion.In this paper,we consider a variable selection procedure by combining basis function approximation with SCAD penalty.The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components.With appropriate selection of tuning parameters,we establish the consistency and sparseness of this procedure.  相似文献   

5.
The $k$ -Nearest Neighbour classifier is widely used and popular due to its inherent simplicity and the avoidance of model assumptions. Although the approach has been shown to yield a near-optimal classification performance for an infinite number of samples, a selection of the most decisive data points can improve the classification accuracy considerably in real settings with a limited number of samples. At the same time, a selection of a subset of representative training samples reduces the required amount of storage and computational resources. We devised a new approach that selects a representative training subset on the basis of an evolutionary optimization procedure. This method chooses those training samples that have a strong influence on the correct prediction of other training samples, in particular those that have uncertain labels. The performance of the algorithm is evaluated on different data sets. Additionally, we provide graphical examples of the selection procedure.  相似文献   

6.
In this paper we develop an econometric method for consistent variable selection in the context of a linear factor model with observable factors for panels of large dimensions. The subset of factors that best fit the data is sequentially determined. Firstly, a partial R2 rule is used to show the existence of an optimal ordering of the candidate variables. Secondly, We show that for a given order of the regressors, the number of factors can be consistently estimated using the Bayes information criterion. The Akaike will asymptotically lead to overfitting of the model. The theory is established under approximate factor structure which allows for limited cross-section and serial dependence in the idiosyncratic term. Simulations show that the proposed two-step selection technique has good finite sample properties. The likelihood of selecting the correct specification increases with the number of cross-sections both asymptotically and in small samples. Moreover, the proposed variable selection method is computationally attractive. For K potential candidate factors, the search requires only 2K regressions compared to 2K for an exhaustive search.  相似文献   

7.
The purpose of this paper is twofold. First we consider a class of nondifferentiable penalty functions for constrained Lipschitz programs and then we show how these penalty functions can be employed to solve a constrained Lipschitz program. The penalty functions considered incorporate a barrier term which makes their value go to infinity on the boundary of a perturbation of the feasible set. Exploiting this fact it is possible to prove, under mild compactness and regularity assumptions, a complete correspondence between the unconstrained minimization of the penalty functions and the solution of the constrained program, thus showing that the penalty functions are exact according to the definition introduced in [17]. Motivated by these results, we propose some algorithm models and study their convergence properties. We show that, even when the assumptions used to establish the exactness of the penalty functions are not satisfied, every limit point of the sequence produced by a basic algorithm model is an extended stationary point according to the definition given in [8]. Then, based on this analysis and on the one previously carried out on the penalty functions, we study the consequence on the convergence properties of increasingly demanding assumptions. In particular we show that under the same assumptions used to establish the exactness properties of the penalty functions, it is possible to guarantee that a limit point at least exists, and that any such limit point is a KKT point for the constrained problem.This research has been partially supported by the National Research Program on Metodi di Ottimizzazione per le Decisioni, Ministero dell' Università e della Ricerca Scientifica e Tecnologica.  相似文献   

8.
The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where \(p \ge 1\) and \(q \ge 1\) are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case \({\mathcal {O}}(1/t)\) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.  相似文献   

9.
Variable selection is an important aspect of high-dimensional statistical modeling, particularly in regression and classification. In the regularization framework, various penalty functions are used to perform variable selection by putting relatively large penalties on small coefficients. The L1 penalty is a popular choice because of its convexity, but it produces biased estimates for the large coefficients. The L0 penalty is attractive for variable selection because it directly penalizes the number of non zero coefficients. However, the optimization involved is discontinuous and non convex, and therefore it is very challenging to implement. Moreover, its solution may not be stable. In this article, we propose a new penalty that combines the L0 and L1 penalties. We implement this new penalty by developing a global optimization algorithm using mixed integer programming (MIP). We compare this combined penalty with several other penalties via simulated examples as well as real applications. The results show that the new penalty outperforms both the L0 and L1 penalties in terms of variable selection while maintaining good prediction accuracy.  相似文献   

10.
Large Deviations of Queues Sharing a Randomly Time-Varying Server   总被引:1,自引:0,他引:1  
We consider a discrete-time model where multiple queues, each with its own exogenous arrival process, are served by a server whose capacity varies randomly and asynchronously with respect to different queues. This model is primarily motivated by the problem of efficient scheduling of transmissions of multiple data flows sharing a wireless channel. We address the following problem of controlling large deviations of the queues: find a scheduling rule, which is optimal in the sense of maximizing
(0.1)
where Q i is the length of the i-th queue in a stationary regime, and a i >0 are parameters. Thus, we seek to maximize the minimum of the exponential decay rates of the tails of distributions of weighted queue lengths a i Q i . We give a characterization of the upper bound on (0.1) under any scheduling rule, and of the lower bound on (0.1) under the exponential (EXP) rule. We prove that the two bounds match, thus proving optimality of the EXP rule. The EXP rule is very parsimonious in that it does not require any “pre-computation” of its parameters, and uses only current state of the queues and of the server. The EXP rule is not invariant with respect to scaling of the queues, which complicates its analysis in the large deviations regime. To overcome this, we introduce and prove a refined sample path large deviations principle, or refined Mogulskii theorem, which is of independent interest.   相似文献   

11.
An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a \(\ell _{1,\infty }\) -norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.  相似文献   

12.
The varying-coefficient model is flexible and powerful for modeling the dynamic changes of regression coefficients. We study the problem of variable selection and estimation in this model in the sparse, high-dimensional case. We develop a concave group selection approach for this problem using basis function expansion and study its theoretical and empirical properties. We also apply the group Lasso for variable selection and estimation in this model and study its properties. Under appropriate conditions, we show that the group least absolute shrinkage and selection operator (Lasso) selects a model whose dimension is comparable to the underlying model, regardless of the large number of unimportant variables. In order to improve the selection results, we show that the group minimax concave penalty (MCP) has the oracle selection property in the sense that it correctly selects important variables with probability converging to one under suitable conditions. By comparison, the group Lasso does not have the oracle selection property. In the simulation parts, we apply the group Lasso and the group MCP. At the same time, the two approaches are evaluated using simulation and demonstrated on a data example.  相似文献   

13.
Large-scale empirical data, the sample size and the dimension are high, often exhibit various characteristics. For example, the noise term follows unknown distributions or the model is very sparse that the number of critical variables is fixed while dimensionality grows with n. The authors consider the model selection problem of lasso for this kind of data. The authors investigate both theoretical guarantees and simulations, and show that the lasso is robust for various kinds of data.  相似文献   

14.
This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an \(\varepsilon \)-global minimizer is proved. At each iteration k, the framework requires the \(\varepsilon ^{(k)}\)-global minimizer of a subproblem, where \(\varepsilon ^{(k)} \rightarrow \varepsilon \). We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an \(\varepsilon ^{(k)}\)-global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the \(\varepsilon ^{(k)}\)-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.  相似文献   

15.
A Newton Method for Linear Programming   总被引:1,自引:0,他引:1  
A fast Newton method is proposed for solving linear programs with a very large (106) number of constraints and a moderate (102) number of variables. Such linear programs occur in data mining and machine learning. The proposed method is based on the apparently overlooked fact that the dual of an asymptotic exterior penalty formulation of a linear program provides an exact least 2-norm solution to the dual of the linear program for finite values of the penalty parameter but not for the primal linear program. Solving the dual problem for a finite value of the penalty parameter yields an exact least 2-norm solution to the dual, but not a primal solution unless the parameter approaches zero. However, the exact least 2-norm solution to the dual problem can be used to generate an accurate primal solution if mn and the primal solution is unique. Utilizing these facts, a fast globally convergent finitely terminating Newton method is proposed. A simple prototype of the method is given in eleven lines of MATLAB code. Encouraging computational results are presented such as the solution of a linear program with two million constraints that could not be solved by CPLEX 6.5 on the same machine.  相似文献   

16.
We discuss the problem of estimating the number of principal components in principal components analysis (PCA). Despite the importance of the problem and the multitude of solutions proposed in literature, it comes as a surprise that there does not exist a coherent asymptotic framework, which would justify different approaches depending on the actual size of the dataset. In this article, we address this issue by presenting an approximate Bayesian approach based on Laplace approximation and introducing a general method of developing criteria for model selection, called PEnalized SEmi-integrated Likelihood (PESEL). Our general framework encompasses a variety of existing approaches based on probabilistic models, like the Bayesian Information Criterion for Probabilistic PCA (PPCA), and enables the construction of new criteria, depending on the size of the dataset at hand and additional prior information. Specifically, we apply PESEL to derive two new criteria for datasets where the number of variables substantially exceeds the number of observations, which is out of the scope of currently existing approaches. We also report results of extensive simulation studies and real data analysis, which illustrate the desirable properties of our proposed criteria as compared to state-of-the-art methods and very recent proposals. Specifically, these simulations show that PESEL-based criteria can be quite robust against deviations from the assumptions of a probabilistic model. Selected PESEL-based criteria for the estimation of the number of principal components are implemented in the R package pesel, which is available on github (https://github.com/psobczyk/pesel). Supplementary material for this article, with additional simulation results, is available online. The code to reproduce all simulations is available at https://github.com/psobczyk/pesel_simulations.  相似文献   

17.
A new class of smooth exact penalty functions was recently introduced by Huyer and Neumaier. In this paper, we prove that the new smooth penalty function for a constrained optimization problem is exact if and only if the standard nonsmooth penalty function for this problem is exact. We also provide some estimates of the exact penalty parameter of the smooth penalty function, and, in particular, show that it asymptotically behaves as the square of the exact penalty parameter of the standard \(\ell _1\) penalty function. We briefly discuss a simple way to reduce the exact penalty parameter of the smooth penalty function, and study the effect of nonlinear terms on the exactness of this function.  相似文献   

18.
We consider a class of elasticity equations in \({\mathbb{R}^d}\) whose elastic moduli depend on n separated microscopic scales. The moduli are random and expressed as a linear expansion of a countable sequence of random variables which are independently and identically uniformly distributed in a compact interval. The multiscale Hellinger–Reissner mixed problem that allows for computing the stress directly and the multiscale mixed problem with a penalty term for nearly incompressible isotropic materials are considered. The stochastic problems are studied via deterministic problems that depend on a countable number of real parameters which represent the probabilistic law of the stochastic equations. We study the multiscale homogenized problems that contain all the macroscopic and microscopic information. The solutions of these multiscale homogenized problems are written as generalized polynomial chaos (gpc) expansions. We approximate these solutions by semidiscrete Galerkin approximating problems that project into the spaces of functions with only a finite number of N gpc modes. Assuming summability properties for the coefficients of the elastic moduli’s expansion, we deduce bounds and summability properties for the solutions’ gpc expansion coefficients. These bounds imply explicit rates of convergence in terms of N when the gpc modes used for the Galerkin approximation are chosen to correspond to the best N terms in the gpc expansion. For the mixed problem with a penalty term for nearly incompressible materials, we show that the rate of convergence for the best N term approximation is independent of the Lamé constants’ ratio when it goes to \({\infty}\). Correctors for the homogenization problem are deduced. From these we establish correctors for the solutions of the parametric multiscale problems in terms of the semidiscrete Galerkin approximations. For two-scale problems, an explicit homogenization error which is uniform with respect to the parameters is deduced. Together with the best N term approximation error, it provides an explicit convergence rate for the correctors of the parametric multiscale problems. For nearly incompressible materials, we obtain a homogenization error that is independent of the ratio of the Lamé constants, so that the error for the corrector is also independent of this ratio.  相似文献   

19.
Semiparametric partially linear varying coefficient models (SPLVCM) are frequently used in statistical modeling. With high-dimensional covariates both in parametric and nonparametric part for SPLVCM, sparse modeling is often considered in practice. In this paper, we propose a new estimation and variable selection procedure based on modal regression, where the nonparametric functions are approximated by $B$ -spline basis. The outstanding merit of the proposed variable selection procedure is that it can achieve both robustness and efficiency by introducing an additional tuning parameter (i.e., bandwidth $h$ ). Its oracle property is also established for both the parametric and nonparametric part. Moreover, we give the data-driven bandwidth selection method and propose an EM-type algorithm for the proposed method. Monte Carlo simulation study and real data example are conducted to examine the finite sample performance of the proposed method. Both the simulation results and real data analysis confirm that the newly proposed method works very well.  相似文献   

20.
In 2005, Chen et al. introduced a sequential importance sampling (SIS) procedure to analyze zero-one two-way tables with given fixed marginal sums (row and column sums) via the conditional Poisson (CP) distribution. They showed that compared with Monte Carlo Markov chain (MCMC)-based approaches, their importance sampling method is more efficient in terms of running time and also provides an easy and accurate estimate of the total number of contingency tables with fixed marginal sums. In this paper, we extend their result to zero-one multi-way ( $d$ -way, $d \ge 2$ ) contingency tables under the no $d$ -way interaction model, i.e., with fixed $d-1$ marginal sums. Also, we show by simulations that the SIS procedure with CP distribution to estimate the number of zero-one three-way tables under the no three-way interaction model given marginal sums works very well even with some rejections. We also applied our method to Samson’s monks data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号