首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we investigate Lagrangian submanifolds in the homogeneous nearly Kähler \(\mathbb {S}^3 \times \mathbb {S}^3\). We introduce and make use of a triplet of angle functions to describe the geometry of a Lagrangian submanifold in \(\mathbb {S}^3 \times \mathbb {S}^3\). We construct a new example of a flat Lagrangian torus and give a complete classification of all the Lagrangian immersions of spaces of constant sectional curvature. As a corollary of our main result, we obtain that the radius of a round Lagrangian sphere in the homogeneous nearly Kähler \(\mathbb {S}^3 \times \mathbb {S}^3\) can only be \(\frac{2}{\sqrt{3}}\) or \(\frac{4}{\sqrt{3}}\).  相似文献   

2.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

3.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

4.
In this paper, we study pseudo-Riemannian submanifolds of a pseudo-hyperbolic space \(\mathbb H^{m-1}_s (-1) \subset \mathbb E^m_{s+1}\) with 2-type pseudo-hyperbolic Gauss map. We give a characterization of proper pseudo-Riemannian hypersurfaces in \(\mathbb H^{n+1}_s (-1) \subset \mathbb E^{n+2}_{s+1}\) with non-zero constant mean curvature and 2-type pseudo-hyperbolic Gauss map. For \(n=2\), we prove classification theorems. In addition, we show that the hyperbolic Veronese surface is the only maximal surface fully lying in \(\mathbb H^4_2 (-1) \subset \mathbb H^{m-1}_2 (-1)\) with 2-type pseudo-hyperbolic Gauss map. Moreover, we prove that a flat totally umbilical pseudo-Riemannian hypersurface \(M^n_t\) of the pseudo-hyperbolic space \(\mathbb {H}^{n+1}_t(-1) \subset \mathbb E^{n+2}_{t+1}\) has biharmonic pseudo-hyperbolic Gauss map.  相似文献   

5.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

6.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

7.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

8.
Let \(\mathcal {C}\subset \mathbb {Q}^p_+\) be a rational cone. An affine semigroup \(S\subset \mathcal {C}\) is a \(\mathcal {C}\)-semigroup whenever \((\mathcal {C}\setminus S)\cap \mathbb {N}^p\) has only a finite number of elements. In this work, we study the tree of \(\mathcal {C}\)-semigroups, give a method to generate it and study the \(\mathcal {C}\)-semigroups with minimal embedding dimension. We extend Wilf’s conjecture for numerical semigroups to \(\mathcal {C}\)-semigroups and give some families of \(\mathcal {C}\)-semigroups fulfilling the extended conjecture. Other conjectures formulated for numerical semigroups are also studied for \(\mathcal {C}\)-semigroups.  相似文献   

9.
We consider a singular differential-difference operator \(\Lambda \) on the real line which generalizes the Cherednik operator associated with the reflection group \(\mathbb {Z}_2\) on \(\mathbb {R}\). We establish the Paley–Wiener theorems for the generalized Fourier transform on \(\mathbb {R}\) tied to \(\Lambda \).  相似文献   

10.
In this paper, we extend the lattice Constructions D, \(D'\) and \(\overline{D}\) (this latter is also known as Forney’s code formula) from codes over \(\mathbb {F}_p\) to linear codes over \(\mathbb {Z}_q\), where \(q \in \mathbb {N}\). We define an operation in \(\mathbb {Z}_q^n\) called zero-one addition, which coincides with the Schur product when restricted to \(\mathbb {Z}_2^n\) and show that the extended Construction \(\overline{D}\) produces a lattice if and only if the nested codes are closed under this addition. A generalization to the real case of the recently developed Construction \(A'\) is also derived and we show that this construction produces a lattice if and only if the corresponding code over \(\mathbb {Z}_q[X]/X^a\) is closed under a shifted zero-one addition. One of the motivations for this work is the recent use of q-ary lattices in cryptography.  相似文献   

11.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

12.
We prove Nikol’skii type inequalities that, for polynomials on the n-dimensional torus \(\mathbb {T}^n\), relate the \(L^p\)-norm with the \(L^q\)-norm (with respect to the normalized Lebesgue measure and \(0 <p <q < \infty \)). Among other things, we show that \(C=\sqrt{q/p}\) is the best constant such that \(\Vert P\Vert _{L^q}\le C^{\text {deg}(P)} \Vert P\Vert _{L^p}\) for all homogeneous polynomials P on \(\mathbb {T}^n\). We also prove an exact inequality between the \(L^p\)-norm of a polynomial P on \(\mathbb {T}^n\) and its Mahler measure M(P), which is the geometric mean of |P| with respect to the normalized Lebesgue measure on \(\mathbb {T}^n\). Using extrapolation, we transfer this estimate into a Khintchine–Kahane type inequality, which, for polynomials on \(\mathbb {T}^n\), relates a certain exponential Orlicz norm and Mahler’s measure. Applications are given, including some interpolation estimates.  相似文献   

13.
For a singular Riemannian foliation \(\mathcal {F}\) on a Riemannian manifold M, a curve is called horizontal if it meets the leaves of \(\mathcal {F}\) perpendicularly. For a singular Riemannian foliation \(\mathcal {F}\) on a unit sphere \(\mathbb {S}^{n}\), we show that if \(\mathcal {F}\) satisfies some properties, then the horizontal diameter of \(\mathbb {S}^{n}\) is \(\pi \), i.e., any two points in \(\mathbb {S}^{n}\) can be connected by a horizontal curve of length \(\le \pi \).  相似文献   

14.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

15.
In order to have estimates on the solutions of the equation \(\bar{\partial }u=\omega \) on a Stein manifold, we introduce a new method, the “raising steps method”, to get global results from local ones. In particular, it allows us to transfer results from open sets in \({\mathbb {C}}^{n}\) to open sets in a Stein manifold. Using it, we get \(\displaystyle L^{r}-L^{s}\) results for solutions of the equation \(\bar{\partial }u=\omega \) with a gain, \(\displaystyle s>r\), in strictly pseudo convex domains in Stein manifolds. We also get \(\displaystyle L^{r}-L^{s}\) results for domains in \({\mathbb {C}}^{n}\) locally biholomorphic to convex domains of finite type.  相似文献   

16.
We prove that the first positive eigenvalue, normalized by the volume, of the sub-Laplacian associated with a strictly pseudo-convex pseudo-Hermitian structure \(\theta \) on the CR sphere \(\mathbb {S}^{2n+1}\subset \mathbb {C}^{n+1}\), achieves its maximum when \(\theta \) is the standard contact form.  相似文献   

17.
We proved the existence of convex solution to a class of fully nonlinear elliptic equations with second boundary condition on uniformly convex domains in \(\mathbb {R}^{n}\), and then applied it to solve a boundary value problem for minimal Lagrangian graphs in the pseudo-Euclidean space \(\mathbb {R}^{2n}_n\).  相似文献   

18.
Let m be a positive integer \(\ge \)3 and \(\lambda =2\cos \frac{\pi }{m}\). The Hecke group \(\mathfrak {G}(\lambda )\) is generated by the fractional linear transformations \(\tau + \lambda \) and \(-\frac{1}{\tau }\) for \(\tau \) in the upper half plane \(\mathbb H\) of the complex plane \(\mathbb C\). We consider a set of functions \(\mathfrak {f}_0, \mathfrak {f}_i\) and \(\mathfrak {f}_{\infty }\) automorphic with respect to \(\mathfrak {G}(\lambda )\), constructed from the conformal mapping of the fundamental domain of \(\mathfrak {G}(\lambda )\) to the upper half plane \(\mathbb H\), and establish their connection with the Legendre functions and a class of hyper-elliptic functions. Many well-known classical identities associated with the cases of \(\lambda =1\) and 2 are preserved. As an application, we will establish a set of identities expressing the reciprocal of \(\pi \) in terms of the hypergeometric series.  相似文献   

19.
Given a smooth, symmetric and homogeneous of degree one function \(f\left( \lambda _{1},\ldots ,\lambda _{n}\right) \) satisfying \(\partial _{i}f>0\quad \forall \,i=1,\ldots , n\), and a properly embedded smooth cone \({\mathcal {C}}\) in \({\mathbb {R}}^{n+1}\), we show that under suitable conditions on f, there is at most one f self-shrinker (i.e. a hypersurface \(\Sigma \) in \({\mathbb {R}}^{n+1}\) satisfying \(f\left( \kappa _{1},\ldots ,\kappa _{n}\right) +\frac{1}{2}X\cdot N=0\), where \(\kappa _{1},\ldots ,\kappa _{n}\) are principal curvatures of \(\Sigma \)) that is asymptotic to the given cone \({\mathcal {C}}\) at infinity.  相似文献   

20.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号