首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We demonstrate that colloidal Cu(2-x)Se nanocrystals exhibit a well-defined infrared absorption band due to the excitation of positive charge carrier oscillations (i.e., a valence band plasmon mode), which can be tuned reversibly in width and position by varying the copper stoichiometry. The value of x could be incrementally varied from 0 (no plasmon absorption, then a broad peak at 1700 nm) to 0.4 (narrow plasmon band at 1100 nm) by oxidizing Cu(2)Se nanocrystals (upon exposure either to oxygen or to a Ce(IV) complex), and it could be incrementally restored back to zero by the addition of a Cu(I) complex. The experimentally observed plasmonic behavior is in good agreement with calculations based on the electrostatic approximation.  相似文献   

2.
Silver nanocrystals, self-organized in compact hexagonal networks, on gold and graphite exhibit anisotropic optical properties. From polarized electron photoemission spectroscopy, a two-photon mechanism is demonstrated and an enhancement due to the surface plasmon resonance (SPR) of the nanocrystal film is observed. Two SPR peaks appear, due to dipolar interactions and induced by the self-organization of silver nanocrystals. This property is used to probe the substrate effect on the plasmon resonance. Its damping is related to particle–substrate interactions.  相似文献   

3.
Uniform, monodisperse gold nanocrystals have been adsorbed and chemically bound to Merino wool fibres, providing a permanent colouration through the interaction of visible light with the plasmon resonant modes of the nanocrystals. Surface analysis by X-ray photoelectron spectroscopy confirmed that the nanocrystalline gold was bound through the nitrogen of the amino groups on the surface of the gold to the keratin of the fibres. No shift in the absorptions attributed to the plasmon resonance modes of the nanocrystals were observed.  相似文献   

4.
Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambdamax, 530 m) are in equilibrium with the ordered nanocrystals in the film (lambdamax, 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorder the gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.  相似文献   

5.
Ag2S nanocrystals with a mean diameter of 5.9 nm (sigma= 1.65 nm) and characteristic surface plasmon resonance absorption at 330 nm have been synthesized in water-in-supercritical CO2 reverse microemulsion using the commonly used AOT surfactant with 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (F-pentanol) as cosurfactant.  相似文献   

6.
Chiral carbonaceous nanotubes (CNT) were successfully used in plasmon‐free surface‐enhanced Raman scattering (SERS) for the first time. Further modification of TiO2 nanocrystals on the chiral CNTs successfully realized the recycling of SERS substrate as chiral CNT/TiO2 hybrids. The high SERS sensitivity of methylene blue (MB) over the chiral CNT/TiO2 hybrids is ascribed to the laser‐driven birefringence induced by the helical structure, which provides much more opportunities for the occurrence of Raman scattering. The TiO2 nanocrystals highly dispersed on the surface and inside the hollow cavity of chiral CNTs can completely degrade the MB under the solar light irradiation, leading to the self‐cleaning of SERS substrate. The present research opens a new way for the application of chiral inorganic materials in plasmon‐free SERS detection.  相似文献   

7.
Transition-metal oxide nanocrystals are interesting candidates for localized surface plasmon resonance hosts because they exhibit fascinating properties arising from the unique character of their outer-d valence electrons. WO(3-δ) nanoparticles are known to have intense visible and near-IR absorption, but the origin of the optical absorption has remained unclear. Here we demonstrate that metallic phases of WO(3-δ) nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasmonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.  相似文献   

8.
For developing new excellent electrocatalysts toward methanol and oxygen, branched Au nanocrystals have been prepared in high yield by the reaction of HAuCl4 and sodium diphenylamine‐4‐sulfonate in the presence of PEG (polyethylene glycol) at room temperature. When the amount of PEG was in the range of 1–3 mL, branched Au nanocrystals were all obtained, and the amounts of sodium diphenylamine‐4‐sulfonate and HAuCl4 had no obvious effect on the morphology of gold nanocrystals. PEG molecules play an important role in the formation of branched gold nanocrystals. The nanocrystals were characterized by transmission electron microscopy (TEM), selected area electron diffraction, high‐resolution transmission electron microscopy (HRTEM) and UV‐Vis absorption spectrum. HRTEM research suggests that the tips of gold nanocrystals grow selectively in the [111] directions. The UV‐Vis absorption spectrum displays two‐separated surface plasmon resonance peaks.  相似文献   

9.
Ultrathin nanocrystalline films of gold formed at different temperatures at the organic-aqueous interface have been investigated by X-ray diffraction, electron microscopy, atomic force microscopy, and electronic spectroscopy. The films are smooth and continuous over relatively large length scales and are generally approximately 100 nm thick. The size of the nanocrystals is sensitive to the reaction temperature, which also determines whether the film is metallic or an activated conductor. The surface plasmon band of gold is highly red-shifted in the films. Alkanethiols perturb the structure of the films, with the magnitude of the effect depending on the chain length. Accordingly, the position of the plasmon band and the electrical resistance of the films are affected by interaction with alkanethiols; the plasmon band approaches that of isolated nanocrystals in the presence of long-chain thiols.  相似文献   

10.
本文简要综述了金属-半导体异质结构纳米晶的设计、可控制备和物性研究的相关工作.设计了异相成核与生长、选择硫化和种子介导液相外延生长3种不同的方法并以此制备了多种金属-半导体异质结构纳米晶,对其中所涉及的反应机制进行了论述,并简要探讨了金属-半导体异质结构纳米晶的热稳定性、表面等离子共振活性、荧光特性以及异质界面的电荷转移和保持能力.  相似文献   

11.
Ceramic nanoparticles that exhibit a plasmonic response are promising next‐generation photonic materials. In this contribution, a solid‐state metathesis method has been reported for the synthesis of Group 4 nitride (TiN, ZrN, and HfN) nanocrystals. A high‐temperature (1000 °C) reaction between Group 4 metal oxide (TiO2, ZrO2, and HfO2) nanoparticles and magnesium nitride powder yielded nitride nanocrystals that were dispersible in water. A localized surface plasmonic resonance was observed in the near‐infrared region for TiN and in the visible region of light for ZrN and HfN nanocrystals. The frequency of the plasmon resonance was dependent on the refractive index of the solvent and the nanocrystal size.  相似文献   

12.
We demonstrate that anisotropic semiconductor nanocrystals display localized surface plasmon resonances that are dependent on the nanocrystal shape and cover a broad spectral region in the near-IR wavelengths. In-plane and out-of-plane dipolar resonances were observed for colloidal dispersions of Cu(2-x)S nanodisks, and the wavelengths of these resonances are in good agreement with calculations carried out in the electrostatic limit. The wavelength, line shape, and relative intensities of these plasmon bands can be tuned during the synthetic process by controlling the geometric aspect ratio of the disk or using a postsynthetic thermal-processing step to increase the free carrier densities.  相似文献   

13.
Morphologies à la carte: A kinetic control strategy has been utilized to fabricate bimetallic nanoparticles. Using cubic Pd nanocrystals as seeds and a syringe pump that enables precise control over precursor injection rate, it is possible to synthesize Pd-Ag bimetallic nanoparticles with tailored shapes (see picture: dimers, eccentric hybrid bars, and core-shell structures) and tunable localized surface plasmon resonances.  相似文献   

14.
We present a comparative study of optical and electronic properties for PbS nanocrystals and Au-PbS core-shell nanostructures. In Au-PbS nanostructures, we observed two nontrivial synergistic effects: (i) extinction enhancement due to coupling of surface plasmon resonance in the Au core to the excitonic states in the semiconducting PbS shell, and (ii) strong p-type electronic doping of Au-PbS nanocrystal solids that we explained by the intraparticle charge transfer between the PbS shell and the Au core.  相似文献   

15.
Remarkable magneto‐optical properties of a new isolator material, that is, europium sulfide nanocrystals with gold (EuS–Au nanosystem), has been demonstrated for a future photo‐information technology. Attachment of gold particles that exhibit surface plasmon resonance leads to amplification of the magneto‐optical properties of the EuS nanocrystals. To construct the EuS–Au nanosystems, cubic EuS and spherical Au nanocrystals have been joined by a variety of organic linkers, that is, 1,2‐ethanedithiol (EDT), 1,6‐hexanedithiol (HDT), 1,10‐decanedithiol (DDT), 1,4‐bisethanethionaphthalene (NpEDT), or 1,4‐bisdecanethionaphthalene (NpDDT) . Formation of these systems was observed by XRD, TEM, and absorption spectra measurements. The magneto‐optical properties of the EuS–Au nanosystem have been characterized by using Faraday rotation spectroscopy. The Faraday rotation angle of the EuS–Au nanosystem is dependent on the Au particle size and interparticle distance between EuS and Au nanocrystals. Enhancement of the Faraday rotation of EuS–Au nanosystems was observed. The spin configuration in the excited state of the EuS–Au nanosystem was also investigated using photo‐assisted electron paramagnetic resonance.  相似文献   

16.
The discovery of localized surface plasmon resonance (LSPR) in semiconductor nanocrystals has initiated a new field in plasmonics. Plasmonic nanocrystals in particular have seen rapid development in recent years because they are a class of materials with unique photoelectronic properties. At present, a growing number of amorphous plasmonic materials has been steadily capturing scientific interest, though only a few of these are well characterized. Here we focus on recent developments in state‐of‐the art experiments and explore the vast library of plasmonic properties in amorphous materials, including their application fields and optical spectral range. Taken together, the growing regime of amorphous material plasmonics offers enticing avenues for harnessing light–matter interactions from the visible to the terahertz region, with new potential for optical manipulation beyond what can be accomplished using traditional crystal materials.  相似文献   

17.
2D arrays of Au-PNIPAM core-shell nanocrystals were fabricated using convective deposition and spin-coating. The particle density and ordering were studied by AFM. Annealing at 700 °C removes the polymer shell, while retaining a monolayer of well-separated gold nanoparticles. The surface plasmon modes of the colloid monolayers could be measured by spectroscopic ellipsometry.  相似文献   

18.
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

19.
We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of approximately 10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about 1 order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.  相似文献   

20.
Introducing a few atoms of impurities or dopants in semiconductor nanocrystals can drastically alter the existing properties or even introduce new properties. For example, mid-gap states created by doping tremendously affect photocatalytic activities and surface controlled redox reactions, generate new emission centers, show thermometric optical switching, make FRET donors by enhancing the excited state lifetime, and also create localized surface plasmon resonance induced low energy absorption. In addition, researchers have more recently started focusing their attention on doped nanocrystals as an important and alternative material for solar energy conversion to meet the current demand for renewable energy. Moreover, the electrical and magnetic properties of the host are also strongly altered on doping. These beneficial dopant-induced changes suggest that doped nanocrystals with proper selections of dopant–host pairs may be helpful for generating designer materials for a wide range of current technological needs. How properties relate to the doping of a variety of semiconductor nanocrystals are summarized in this Review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号