首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.  相似文献   

2.
In this paper, we study the bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation by using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space. Then we show the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, compactions and kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions and periodic wave solutions are implicitly given,while the expressions of kink-like and antikink-like wave solutions are explicitly shown. The dynamics of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of the nonlinear wave.  相似文献   

3.
We derive the weakly nonlocal limit of a one-population neuronal field model of the Wilson-Cowan type in one spatial dimension. By transforming this equation to an equation in the firing rate variable, it is shown that stationary periodic solutions exist by appealing to a pseudo-potential analysis. The solutions of the full nonlocal equation obey a uniform bound, and the stationary periodic solutions in the weakly nonlocal limit satisfying the same uniform bound are characterized by finite ranges of pseudo energy constants. The time dependent version of the model is reformulated as a Ginzburg-Landau-Khalatnikov type of equation in the firing rate variable where the maximum (minimum) points correspond stable (unstable) homogeneous solutions of the weakly nonlocal limit. Based on this formulation it is also conjectured that the stationary periodic solutions are unstable. We implement a numerical method for the weakly nonlocal limit of the Wilson-Cowan type of model based on the wavelet-Galerkin approach. We perform some numerical tests to illustrate the stability of homogeneous solutions and the evolution of the bumps.  相似文献   

4.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

5.
We consider spatially homogeneous time periodic solutions of general partial differential equations. We prove that, when such a solution is close enough to a homoclinic orbit or a homoclinic bifurcation for the differential equation governing the spatially homogeneous solutions of the PDE, then it is generically unstable with respect to large wavelength perturbations. Moreover, the instability is of one of the two following types: either the well-known Kuramoto phase instability, corresponding to a Floquet multiplier becoming larger than 1, or a fundamentally different kind of instability, occurring with a period doubling at an intrinsic finite wavelength, and corresponding to a Floquet multiplier becoming smaller than −1. Received: 5 December 1999 / Accepted: 31 July 2000  相似文献   

6.
Non-linear oscillations of a beam subjected to a periodic force at a combination resonance are considered. Using the Galerkin method, a partial differential equation of oscillations is reduced to a system of ordinary differential equations with a small parameter. A system of three autonomous differential equations is derived, the multiple scales method being used. Qualitative properties of trajectories are analyzed. The Naimark-Sacker bifurcations at the combination resonance are analyzed by the center manifold method. Almost-periodic oscillations of a beam arise due to these bifurcations. These oscillations are investigated qualitatively and numerically.  相似文献   

7.
We perform bifurcation analysis in a complex Ginzburg–Landau system with delayed feedback under the homogeneous Neumann boundary condition. We calculate the amplitude death region, and it turns out that the boundary of the amplitude death region consists of two Hopf bifurcation curves with wave number zero. The existence conditions for double Hopf bifurcations are established. Taking the feedback strength and time delay as bifurcation parameters, normal forms truncated to the third order at double Hopf singularity are derived, and the unfolding near the critical points is given. The bifurcation diagram near the double Hopf bifurcation is drawn in the two-parameter plane. The phenomena of amplitude death, the existence of stable bifurcating periodic solutions, and the coexistence of two stable periodic solutions with fast oscillation and slow oscillation respectively are simulated.  相似文献   

8.
9.
Pattern formation in a nonlinear damped Mathieu-type partial differential equation defined on one space variable is analyzed. A bifurcation analysis of an averaged equation is performed and compared to full numerical simulations. Parametric resonance leads to periodically varying patterns whose spatial structure is determined by amplitude and detuning of the periodic forcing. At onset, patterns appear subcritically and attractor crowding is observed for large detuning. The evolution of patterns under the increase of the forcing amplitude is studied. It is found that spatially homogeneous and temporally periodic solutions occur for all detuning at a certain amplitude of the forcing. Although the system is dissipative, spatial solitons are found representing domain walls creating a phase jump of the solutions. Qualitative comparisons with experiments in vertically vibrating granular media are made. (c) 2001 American Institute of Physics.  相似文献   

10.
We present a normal form for traveling waves in one-dimensional excitable media in the form of a differential delay equation. The normal form is built around the well-known saddle-node bifurcation generically present in excitable media. Finite wavelength effects are captured by a delay. The normal form describes the behavior of single pulses in a periodic domain and also the richer behavior of wave trains. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with the saddle node in a Bogdanov-Takens point, and a symmetry-breaking spatially inhomogeneous pitchfork bifurcation. We verify the existence of these bifurcations in numerical simulations. The parameters of the normal form are determined and its predictions are tested against numerical simulations of partial differential equation models of excitable media with good agreement.  相似文献   

11.
Spatially homogeneous solutions of the Landau-Lifshitz-Gilbert equation are analysed. The different cases of conservative as well as dissipative motion are considered separately. For the linearly polarized driven Hamiltonian system we apply a global perturbation theory to uncover the main resonances as well as the phase space structure. The case of circularly polarized driven dissipative motion is studied in detail. We present the complete bifurcation diagram including bifurcations up to codimension three.  相似文献   

12.
Spatially homogeneous solutions of the Landau-Lifshitz-Gilbert equation are analysed. The different cases of conservative as well as dissipative motion are considered separately. For the linearly polarized driven Hamiltonian system we apply a global perturbation theory to uncover the main resonances as well as the phase space structure. The case of circularly polarized driven dissipative motion is studied in detail. We present the complete bifurcation diagram including bifurcations up to codimension three.  相似文献   

13.
套格图桑 《物理学报》2013,62(21):210201-210201
为了构造高维非线性发展方程的无穷序列类孤子新解, 研究了二阶常系数齐次线性常微分方程, 获得了新结论. 步骤一, 给出一种函数变换把二阶常系数齐次线性常微分方程的求解问题转化为一元二次方 程和Riccati方程的求解问题. 在此基础上, 利用Riccati方程解的非线性叠加公式, 获得了二阶常系数齐次线性常微分方程的无穷序列新解. 步骤二, 利用以上得到的结论与符号计算系统Mathematica, 构造了(2+1)维广义Calogero-Bogoyavlenskii-Schiff (GCBS)方程的无穷序列类孤子新解. 关键词: 常微分方程 非线性叠加公式 高维非线性发展方程 无穷序列类孤子新解  相似文献   

14.
The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed.  相似文献   

15.
The equivalence of Fermat's Last Theorem and the non-existence of solutions of a generalized n th order homogeneous hyperbolic partial differential equation in three dimensions and periodic boundary conditions defined in a cubic lattice is demonstrated for all positive integer, n > 2. For the case n = 2, choosing one variable as time, solutions are identified as either propagating or standing waves. Solutions are found to exist in the corresponding problem in two dimensions.  相似文献   

16.
《Physics letters. A》1987,120(4):187-190
A method for constructing periodic solutions of the sine-Hilbert (sH) equation is developed. It is shown that the sH equation can be reducible to a linear differential equation. The explicit periodic solutions are then derived by solving the initial value problem for this linear equation.  相似文献   

17.
18.
The stability of periodic solutions of partial differential equations has been an area of increasing interest in the last decade. The KdV equation is known to have large families of periodic solutions that are parameterized by hyperelliptic Riemann surfaces. They are generalizations of the famous multi-soliton solutions. We show that all such periodic solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are periodic with period equal to an integer multiple of the period of the underlying solution.  相似文献   

19.
We study a one-dimensional filamental model of a chaotically stirred excitable medium. In a numerical simulation we systematically explore its rich bifurcation scenarios involving saddle-nodes, Hopf bifurcations and hysteresis loops. The bifurcations are described in terms of two parameters signifying the excitability of the reacting medium and the strength of the chaotic stirring, respectively. The solution behaviour, in particular at the bifurcation points, is analytically described by means of a nonperturbative variational method. Using this method we reduce the partial differential equations to either algebraic equations for stationary solutions and bifurcations, or to ordinary differential equations in the case of non-stationary solutions and bifurcations. We present numerical simulations corroborating our analytical results.  相似文献   

20.
In this paper, we study a system of three coupled van der Pol oscillators that are coupled through the damping terms. Hopf bifurcations and amplitude death induced by the coupling time delay are first investigated by analyzing the related characteristic equation. Then the oscillation patterns of these bifurcating periodic oscillations are determined and we find that there are two kinds of critical values of the coupling time delay: one is related to the synchronous periodic oscillations, the other is related to eight branches of asynchronous periodic solutions bifurcating simultaneously from the zero solution. The stability of these bifurcating periodic solutions are also explicitly determined by calculating the normal forms on center manifolds, and the stable synchronous and stable phase-locked periodic solutions are found. Finally, some numerical simulations are employed to illustrate and extend our obtained theoretical results and numerical studies also describe the switches of stable synchronous and phase-locked periodic oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号