首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

2.
In this paper, a robust dynamic surface controller with prescribed performance for a class of nonlinear feedback systems is proposed. Utilizing the prescribed performance control (PPC), the prescribed steady state and transient performance for the tracking error of the original system can be ensured through the stabilization of a transformed system. The dynamic surface control procedure solves the mismatched uncertainties and the explosion of the complexity problem. The uncertainties can be eliminated by the constructed compensation signals of a low-pass filter. And it is proven in the performance analysis that the proposed controller is of low complexity and has improved system robustness. Simulation results verify the proposed approach.  相似文献   

3.
This paper investigates nonsingular terminal sliding mode control for a class of uncertain systems with nonlinear inputs and its application in chaos control. When some of the system states are finite-time stable, the nonlinear items that coupled with these states may come into zeros in other subsystems. This will simplify the stability analysis of the whole system greatly. Compared with the traditional finite-time stabilization design method, the introduction of the terminal sliding mode can reduce the input dimensions. Only one control input is requested to realize chaos control of the Liu system when unmatched uncertainties and input nonlinearity coexist. The parameter matrices in the TSM can be determined through the solution of LMIS. Simulation results are given to demonstrate the effectiveness of the proposed method.  相似文献   

4.
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.  相似文献   

5.
对参数不确定结构振动控制方法进行了研究。基于包含原理,采用重叠分散控制策略与保性能控制算法相结合的方法,将高层建筑结构划分成一组子结构,对每一个子结构采用保性能控制方法设计控制器,提出了参数不确定结构重叠分散保性能控制方法,较好地解决了地震激励下参数不确定建筑结构的振动控制问题。以20层Benchmark结构模型为研究对象,采用重叠分散保性能控制策略和集中保性能控制策略进行数值模拟。结果表明,对于结构系统建模存在误差或系统本身存在不确定性的情况,本文提出的重叠分散保性能控制方法均能有效降低结构的地震响应,且能够保证控制系统的可靠性和稳定性。  相似文献   

6.
In this study, under the presentations of system uncertainties, external disturbances, and input nonlinearity in control, a self-learning terminal sliding-mode control scheme is adopted to control the synchronization and anti-synchronization between two chaotic rotating pendulums with different periods of harmonic parametric excitation. Without known bounds of the unmatched nonlinear dynamics, system uncertainties, and external disturbances, the proposed controller, which is associated with time-varying feedback gains, can achieve the control goals. Meanwhile, the feedback gains are not determined beforehand but are self-learning according to the learning rules. Some sufficient conditions for stable synchronizations are performed in the sense of the Lyapunov stability theorem. Besides, numerical simulations are provided to demonstrate the effectiveness of the present scheme.  相似文献   

7.
In this paper, a generalized control scheme for the class of nonlinear multiple-input multiple-output (MIMO) uncertain system with cross-coupling and nonlinearity in their input channels under the influence of external disturbances is presented. This is accomplished using full-order model following sliding mode control based on uncertainty and disturbance estimator (UDE) technique. The fourth-order uncertain nonlinear MIMO system is separated into multiple single-input single-output double integrator subsystems by considering the effect of input coupling and nonlinearity as a disturbance. The UDE is designed to estimate the plant uncertainties as well as external disturbances without the knowledge of the bounds on the uncertainties. The proposed method decouples the system and overcomes the problem of high initial control which ultimately eliminates the reaching phase and the chattering phenomenon which is generally occurred in sliding mode control. The effectiveness of the proposed control scheme is demonstrated through numerical simulation of two-link manipulator.  相似文献   

8.
With the demand for energy efficiency in electrohydraulic servo systems (EHSS), the separate meter-in and separate meter-out (SMISMO) control system draws massive attention. In this paper, the SMISMO control system is decoupled completely into two subsystems by the proposed indirect adaptive robust dynamic surface control (IARDSC) method. Indirect adaptive robust control (IARC) is proposed to address the internal parameter uncertainties and external disturbances. Dynamic surface control (DSC) is utilized in the design procedure of IARC to deal with the inherent ‘explosion of terms’ problem. The proposed IARDSC simplifies the design procedure and decreases the computational cost of the controller. Besides, a faster parameter estimation scheme is proposed to adapt to the parameter change for a better estimation performance. Finally, experimental results show that the proposed IARDSC can achieve a good parameter estimation and trajectory tracking performance. Meanwhile, two energy saving techniques are discussed.  相似文献   

9.
Robust control of uncertain systems has been a field of active research and the technique of uncertainty and disturbance estimator (UDE) has proved itself as a viable tool in the design of a robust control strategy for systems having uncertainties and acted upon by disturbances. Though the technique is quite efficient for ensuring robustness under slow-varying disturbances, the presence of steady-state tracking and estimation errors cannot be ruled out for fast-varying or sinusoidal disturbances. To address this issue, a new form of filter in UDE-based controller is proposed in this work and it is shown that the errors can be kept within acceptable limits by means of appropriate choice of the design parameter \(\alpha \) . Closed-loop stability and simulation results for wing-rock motion control problem employing an UDE-based controller using the new filter are carried out to demonstrate its efficacy against fast-varying uncertainties and disturbances.  相似文献   

10.
Xu  Zhangbao  Xie  Nenggang  Shen  Hao  Hu  Xiaolei  Liu  Qingyun 《Nonlinear dynamics》2021,105(1):345-358
Nonlinear Dynamics - In this paper, an extended state observer-based adaptive prescribed performance control technique is proposed for a class of nonlinear systems with full-state constraints and...  相似文献   

11.
Yao  Hejun  Gao  Fangzheng  Huang  Jiacai  Wu  Yuqiang 《Nonlinear dynamics》2020,99(4):2835-2849

The fixed-time stabilization problem is addressed in this paper for a kind of nonholonomic systems in chained form with unmatched uncertainties and time-varying output constraints. A novel tan-type barrier Lyapunov function is introduced to deal with time-varying output constraints. Under the unified framework of the considered system with and without output constraints, a state feedback controller is designed with the aid of adding a power integrator technique and switching control strategy. It is shown that the suggested controller ensures the states of closed-loop system to zero in a given fixed time without disobeying the constraints. Finally, simulation results are given to confirm the efficacy of the presented control scheme.

  相似文献   

12.
In this paper, a robust fractional-order adaptive intelligent controller is proposed for stabilization of uncertain fractional-order chaotic systems. The intelligent neuro-fuzzy network is used to estimate unknown dynamics of system, while the neuro-fuzzy network parameters as well as the upper bounds of the model uncertainties, disturbances and approximation errors are adaptively estimated via separate adaptive rules. An SMC scheme, with a fractional-order sliding surface, is employed, as the controller to improve the velocity and performance of the proposed control system and to eliminate the unknown but bounded uncertainties, external disturbances and approximation errors. The Lyapunov stability theorem has been also employed to show the stability of the closed-loop system, robustness against uncertainties, external disturbances and approximation errors, while the control signal remains bounded. Explanatory examples and simulation results are given to confirm the effectiveness of the proposed procedure, which consent well with the analytical results.  相似文献   

13.
In this paper, a fuzzy adaptive output feedback control scheme based on fuzzy adaptive observer is proposed to control robotic systems with parameter uncertainties and external disturbances. It is supposed that only the joint positions of the robotic system can be measured, whereas the joint velocities are unknown and unmeasured. First, a fuzzy adaptive nonlinear observer is presented to estimate the joint velocities of robotic systems, and the observation errors are analyzed using strictly positive real approach and Lyapunov stability theory. Next, based on the observed joint velocities, a fuzzy adaptive output feedback controller is developed to guarantee stability of closed-loop system and achieve a certain tracking performance. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded. Finally, simulation examples on a two-link robotic manipulator are presented to show the efficiency of the proposed method.  相似文献   

14.
A p‐adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high‐order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high‐order continuous Galerkin method using static condensation of the interior nodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
An adaptive approximation design for the fault compensation (FC) control is addressed for a class of nonlinear systems with unknown multiple time-delayed nonlinear faults. The magnitude and occurrence time of the multiple faults with unknown time-varying delays are unknown. The function approximation technique using neural networks is employed to adaptively approximate the unknown nonlinear effects and changes in model dynamics due to the time-delayed faults. We design an adaptive memoryless FC control system with a prescribed performance bound to compensate the faults and to guarantee the transient performance of the tracking error from unexpected changes of system dynamics. The adaptive laws for neural networks and the bound of residual approximation errors are derived using the Lyapunov stability theorem, which are used for proving that the tracking error is preserved within the prescribed performance bound regardless of unknown multiple time-delayed nonlinear faults. Simulation examples are presented for illustrating the effectiveness of the proposed control methodology  相似文献   

16.
This paper investigates a low-complexity robust decentralized fault-tolerant prescribed performance control scheme for uncertain larger-scale nonlinear systems with consideration of the unknown nonlinearity, actuator failures, dead-zone input, and external disturbance. Firstly, a new simple finite-time-convergent differentiator is developed to obtain the unmeasurable state variables with arbitrary accuracy. Then, a time-varying sliding manifold involving the output tracking error and its high-order derivatives is constructed to tackle the high-order dynamics of subsystems. Sequentially, a robust decentralized fault-tolerant control scheme is proposed for each sliding manifold with prescribed convergence rate. The prominent advantage of the proposed fault-tolerant control scheme is that any specialized approximation technique, disturbance observer, and recursive procedure of backstepping technique are avoided, which dramatically alleviates the complexity of controller design. Finally, two groups of illustrative examples are employed to demonstrate the effectiveness of the low-complexity decentralized fault-tolerant control scheme under the developed finite-time-convergent differentiator.  相似文献   

17.
This paper addresses the tasks of height and posture motion control for an electronically controlled active air suspension (AAS) system. A mathematical model of a vehicle body with AAS system is established to describe the dynamic characteristics and then formulated into a multi-input multi-output nonlinear system by considering parametric uncertainties and unmodelled dynamics. Based on this mathematical model, a synchronization control strategy is proposed to adjust the heights of adjacent AASs simultaneously, driving the pitch and roll angles closely to an arbitrarily neighborhood of zero, achieving global uniform ultimate boundedness. The proposed controller is robust to parametric uncertainties and external disturbances. A projection operator is utilized to limit the estimated parameters to their corresponding prescribed bounds in finite time. A co-simulation is conducted by combining a virtual vehicle plant with ASS system in AMEsim with the proposed synchronization controller in MATLAB/Simulink. Simulation results demonstrate that the proposed synchronization controller is effective and robust.  相似文献   

18.
In this paper, a robust synchronization control scheme is proposed for chaotic systems in the presence of system uncertainties and unknown external disturbances. For the synchronization error system, the compound disturbance which is estimated using the disturbance observer cannot be directly measured. If the gain matrix is properly chosen, the disturbance observer can approximate the unknown compound disturbance well. And then, the constrained robust synchronization control scheme is presented for uncertain chaotic systems based on the output of disturbance observer. In the design of a robust synchronization control scheme, the effect of unknown control input constraint has been explicitly considered to guarantee the synchronization performance. Numerical simulation results are presented to illustrate the effectiveness of the proposed constrained synchronization control scheme for uncertain chaotic systems.  相似文献   

19.
In this work an h-adaptive Modified Element-Free Galerkin (MEFG) method is investigated. The proposed error estimator is based on a recovery by equilibrium of nodal patches where a recovered stress field is obtained by a moving least square approximation. The procedure generates a smooth recovered stress field that is not only more accurate then the approximate solution but also free of spurious oscillations, normally seen in EFG methods at regions with high gradient stresses or discontinuities.The MEFG method combines conventional EFG with extended partition of unity finite element (EPUFE) methods in order to create global shape functions that allow a direct imposition of the essential boundary conditions.The re-meshing of the integration mesh is based on the homogeneous error distribution criterion and upon a given prescribed admissible error. Some examples are presented, considering a plane stress assumption, which shows the performance of the proposed methodology.  相似文献   

20.
In this paper, motion control and robust path tracking were extended to nonsquare MIMO (Multi-Input Multi-Output) systems having more outputs than inputs. A path-tracking design based on fractional prefilter approach has been developed and extended to control nonsquare MIMO systems. The nonsquare relative gain array (NRG) is used to assess the performance of nonsquare control systems based on steady-state information. The CRONE control approach developed for multivariable plants based on third-generation SISO CRONE methodology is combined with MIMO-QFT (Quantitative Feedback Theory) robust design methodology, taking into account the plant uncertainties. After the determination of CRONE controller, the parameter of prefilter has been optimized considering physical constraints of actuators and the tracking performance specifications. The proposed design is applied to an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号