首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

2.
Yang  Yikun  Yang  Bintang  Niu  Muqing 《Nonlinear dynamics》2018,93(3):1109-1120
An adaptive dynamic surface control (DSC) scheme is proposed for the multi-input multi-output attitude control of near-space hypersonic vehicles (NHV). The proposed control strategy can improve the control performance of NHV despite uncertainties and external disturbances. The proposed controller combines dynamic surface control and radial basis function neural network (RBFNN) and is designed to control the longitudinal dynamics of NHV. The DSC technique is used to handle the problem of “explosion of complexity” inherent to the conventional backstepping method. RBFNN is used to approximate the unknown nonlinear function, and a robustness component is introduced in the controller to cancel the influence of compound disturbance and improve robustness and adaptation of the system. Simulation results show that the proposed strategy possesses good robustness and fast response.  相似文献   

3.
With the demand for energy efficiency in electrohydraulic servo systems (EHSS), the separate meter-in and separate meter-out (SMISMO) control system draws massive attention. In this paper, the SMISMO control system is decoupled completely into two subsystems by the proposed indirect adaptive robust dynamic surface control (IARDSC) method. Indirect adaptive robust control (IARC) is proposed to address the internal parameter uncertainties and external disturbances. Dynamic surface control (DSC) is utilized in the design procedure of IARC to deal with the inherent ‘explosion of terms’ problem. The proposed IARDSC simplifies the design procedure and decreases the computational cost of the controller. Besides, a faster parameter estimation scheme is proposed to adapt to the parameter change for a better estimation performance. Finally, experimental results show that the proposed IARDSC can achieve a good parameter estimation and trajectory tracking performance. Meanwhile, two energy saving techniques are discussed.  相似文献   

4.
This paper addresses the tasks of height and posture motion control for an electronically controlled active air suspension (AAS) system. A mathematical model of a vehicle body with AAS system is established to describe the dynamic characteristics and then formulated into a multi-input multi-output nonlinear system by considering parametric uncertainties and unmodelled dynamics. Based on this mathematical model, a synchronization control strategy is proposed to adjust the heights of adjacent AASs simultaneously, driving the pitch and roll angles closely to an arbitrarily neighborhood of zero, achieving global uniform ultimate boundedness. The proposed controller is robust to parametric uncertainties and external disturbances. A projection operator is utilized to limit the estimated parameters to their corresponding prescribed bounds in finite time. A co-simulation is conducted by combining a virtual vehicle plant with ASS system in AMEsim with the proposed synchronization controller in MATLAB/Simulink. Simulation results demonstrate that the proposed synchronization controller is effective and robust.  相似文献   

5.
For a class of cross-strict feedback hyperchaotic systems with unmatched uncertainties, on the basis of prescribed performance and uncertainty estimator, a backstepping design method is proposed. Uncertainty estimator is introduced to estimate the uncertainties in systems. Backstepping control is used to deal with the unmatched uncertainties. The prescribed performance control method improves the performance of the synchronization system. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.  相似文献   

6.
In this paper, an optimal fuzzy sliding mode controller is used for tracking the position of robot manipulator, is presented. In the proposed control, initially by using inverse dynamic method, the known sections of a robot manipulator’s dynamic are eliminated. This elimination is done due to reduction over structured and unstructured uncertainties boundaries. In order to overcome against existing uncertainties for the tracking position of a robot manipulator, a classic sliding mode control is designed. The mathematical proof shows the closed-loop system in the presence of this controller has the global asymptotic stability. Then, by applying the rules that are obtained from the design of classic sliding mode control and TS fuzzy model, a fuzzy sliding mode control is designed that is free of undesirable phenomena of chattering. Eventually, by applying the PSO optimization algorithm, the existing membership functions are adjusted in the way that the error tracking robot manipulator position is converged toward zero. In order to illustrate the performance of the proposed controller, a two degree-of-freedom robot manipulator is used as the case study. The simulation results confirm desirable performance of optimal fuzzy sliding mode control.  相似文献   

7.
In this paper, a robust fractional-order adaptive intelligent controller is proposed for stabilization of uncertain fractional-order chaotic systems. The intelligent neuro-fuzzy network is used to estimate unknown dynamics of system, while the neuro-fuzzy network parameters as well as the upper bounds of the model uncertainties, disturbances and approximation errors are adaptively estimated via separate adaptive rules. An SMC scheme, with a fractional-order sliding surface, is employed, as the controller to improve the velocity and performance of the proposed control system and to eliminate the unknown but bounded uncertainties, external disturbances and approximation errors. The Lyapunov stability theorem has been also employed to show the stability of the closed-loop system, robustness against uncertainties, external disturbances and approximation errors, while the control signal remains bounded. Explanatory examples and simulation results are given to confirm the effectiveness of the proposed procedure, which consent well with the analytical results.  相似文献   

8.
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.  相似文献   

9.
In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) methodology is proposed based on the integration of sliding mode control and adaptive interval type-2 fuzzy control for chaotic system. The AIT2FSMC system is comprised of a fuzzy control design and a hitting control design. In the fuzzy control design, an interval type-2 fuzzy controller is designed to mimic a feedback linearization (FL) control law. In the hitting control design, a hitting controller is designed to compensate the approximation error between the FL control law and the interval type-2 fuzzy controller. The parameters of the interval type-2 fuzzy controller, as well as the uncertainty bound of the approximation error, are tuned adaptively. The adaptive laws are derived in the sense of Lyapunov stability theorem, thus the stability of the system can be guaranteed. The proposed control system compared to adaptive fuzzy sliding mode control (AFSMC). Simulation results show that the proposed control systems can achieve favorable performance and robust with respect to system uncertainties and external disturbances.  相似文献   

10.
Zhang  Rui  Xu  Bin  Zhao  Wanliang 《Nonlinear dynamics》2020,101(4):2223-2234

This paper addresses the finite-time prescribed performance control of MEMS gyroscopes. From the perspective of practical engineering, this paper arranges the desirable transient and steady-state performances according to the engineering requirements in the controller design procedure. For the tracking performance, prescribed performance control is studied to limited the steady-state error and the maximum overshoot. For the prescribed settling time, super-twisting sliding mode control and nonsingular terminal sliding mode control are employed to achieve finite-time convergence, respectively. The system stability is verified via Lyapunov approach. Through simulation tests, it is demonstrated that prescribed performance and finite-time convergence can be obtained under the proposed control scheme.

  相似文献   

11.
Karray  F.  Tafazolli  S.  Gueaieb  W. 《Nonlinear dynamics》1999,20(2):169-179
A robust control design for high performance joint trajectory tracking of a flexible lightweight manipulator system is proposed. The design is based on a combined controller-observer scheme involving the sliding manifold approach and the optimal interpolation technique. This controller provides the designer with an enhanced joint tracking performance when the system is subject to parametric variations due to structural disturbances caused by link flexibility and load uncertainties. The parametric variations are handled by sliding control and the estimation of the nonlinearly excited elastic dynamics by an optimal interpolator of the structure's dynamic responses. The design procedure is progressive, i.e., we start with a basic controller and then modify it in order to improve the performance. Closed loop simulations with the various designed controllers are used to validate the analytical results and to help choosing the most suitable one.  相似文献   

12.
In this paper, an adaptive controller is proposed to balance a rotary inverted pendulum with time-varying uncertainties. The goal of the control is to bring the pendulum close to the upright position regardless of the various uncertainties and disturbances. Its underactuated dynamics is first decoupled by Olfati’s transformation into a cascade form, and then an adaptive controller is designed to deal with the uncertainties in the new space. Based on the Lyapunov-like theory, the closed loop stability and boundedness of all internal signals can be proved. The simulation results show that the proposed scheme is capable of giving good performance, as desired.  相似文献   

13.
Adaptive sliding mode control of dynamic system using RBF neural network   总被引:1,自引:0,他引:1  
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.  相似文献   

14.
Hesabi Hesari  Abbas  Moradi  Hamed  Movahhedy  Mohammad R. 《Meccanica》2020,55(9):1707-1731

Self-excited vibrations known as chatter are considered as the most detrimental issue in micro-turning processes. Occurring unpredictably, they adversely affect the tool life, productivity rate and surface quality of the machining processes. In this paper, a novel machining arm is modeled as a piezoelectric stacked rod which is subjected to a chatter force in the orthogonal micro-turning process. Due to the fact that machining processes are affected by various sources of uncertainties, H robust control approach is used to suppress the chatter vibrations of the machining arm in the presence of tool wear and dynamic model parameter variations. Also, input control force of the system is provided by exciting the input voltage of piezoelectric layers of the rod. In order to be certain that the designed controller succeeds in suppressing vibrations of the effective structural modes, behavior of the first three modes of vibrations are considered in the final response of the machining arm. In the following, performance of the robust H controller is compared with a modified PID controller. Simulation results show that the H controller improves the robustness and performance of the system against uncertainties. The PID controller extends the stability region of the sharp tool and fails to achieve this purpose for the worn tool although its performance is acceptable in suppressing chatter vibrations.

  相似文献   

15.
Self-tuning fuzzy logic controllers (STFLC) for the active control of Marmara Kocaeli Earthquake excited crane structures are studied in this paper. Vibration control using intelligent controllers, such as fuzzy logic has attracted the attention of structural control engineers during the last few years, because fuzzy logic can handle, uncertainties and heuristic knowledge and even non-linearities effectively and easily. The improved seismic control performance can be achieved by converting a simply designed static gain into a real time variable dynamic gain through a self-tuning mechanism. A self-tuning fuzzy logic controller is designed to reduce the vibrations of the crane structure. The simulated system has a five degrees-of-freedom and modeled system was simulated against the ground motion of the Marmara Kocaeli Earthquake (M w =7.4) in Turkey on August 17, 1999. At the end of the study, the time history of the crane bridge and portal legs displacements, accelerations, and frequency responses of the both uncontrolled and controlled cases are presented. Additionally, the performance of the designed STFLC is also compared with a PD controller. Simulations of an earthquake excited bridge and portal legs are performed to prove the validity of proposed control strategy.  相似文献   

16.
This paper presents a robust nonlinear control strategy to deal with the trajectory tracking control problem for a laboratory helicopter. The helicopter model is considered as a nominal one with uncertainties such as unmodeled nonlinear dynamics, parametric uncertainties, and external disturbances. The proposed control approach incorporates the feedback linearization technique (FLT) and the signal compensation technique. The FLT is first applied to achieve the linearization of the nominal nonlinear model for reducing the conservation of the robust compensator design. A nominal controller based on the linear quadratic regulation method is designed for the linearized nominal system, whereas a robust compensator is introduced to restrain the influences of the uncertainties. It is shown that the trajectory tracking errors of the closed-loop system are ultimately bounded, and the boundaries can be specified by choosing the controller parameters. Simulation and experimental results on the lab helicopter verify the effectiveness of the proposed method.  相似文献   

17.
Bing Zhu  Wei Huo 《Nonlinear dynamics》2013,73(1-2):1139-1154
A robust nonlinear controller is designed for the trajectory tracking of a model-scaled helicopter with uncertain parameters (including uncertain inertial parameters, uncertain structural parameters and uncertain aerodynamic parameters). The proposed controller is based upon the backstepping technique, with modifications to accommodate helicopter dynamics. Aerodynamic uncertainties are addressed by dynamic inverters, and derivatives of virtual controls in the backstepping process are calculated through command filters to avoid complex analytical solutions. Errors resulted from dynamic inverters, command filters, and uncertain parameters are then regarded as disturbances, and treated by nonlinear damping terms. With the proposed controller, it can be proved that tracking errors of the closed-loop system are ultimately bounded with tunable ultimate bounds. Performances of the proposed controller are evaluated by simulation results.  相似文献   

18.
In this paper, a decentralized adaptive control scheme for multi-robot coverage is proposed. This control method is designed based on centroidal Voronoi configuration integrated with robust adaptive fuzzy control techniques. We consider simple single integrator mobile robots used for covering dynamical environments, where an adaptive fuzzy logic system is used to approximate the unknown parts of control law. A robust coverage criterion is used to attenuate the adaptive fuzzy approximation error and measurement noises to a prescribed level. Therefore, the robots motion is forced to obey solutions of a coverage optimization problem. The advantages of the proposed controller can be listed as robustness to external disturbances, computation uncertainties, and measurement noises, while applicability on dynamical environments. A Lyapunov-function based proof is given of robust stability, i.e. convergence to the optimal positions with bounded error. Finally, simulation results are demonstrated for a swarm coverage problem simultaneous with tracking mobile intruders.  相似文献   

19.
Because the nonlinear uncertainty of the continuously variable transmission system operated by the synchronous reluctance motor is unknown, control performance obtained for classical linear controller is poor, with comparison to more complex, nonlinear control methods. Due to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization yields two varied learning rates for two parameters to find two optimal values, which helped improving convergence. Finally, various comparisons of the experimental results are demonstrated to confirm that the proposed control system can result better control performance.  相似文献   

20.
This paper investigates a low-complexity robust decentralized fault-tolerant prescribed performance control scheme for uncertain larger-scale nonlinear systems with consideration of the unknown nonlinearity, actuator failures, dead-zone input, and external disturbance. Firstly, a new simple finite-time-convergent differentiator is developed to obtain the unmeasurable state variables with arbitrary accuracy. Then, a time-varying sliding manifold involving the output tracking error and its high-order derivatives is constructed to tackle the high-order dynamics of subsystems. Sequentially, a robust decentralized fault-tolerant control scheme is proposed for each sliding manifold with prescribed convergence rate. The prominent advantage of the proposed fault-tolerant control scheme is that any specialized approximation technique, disturbance observer, and recursive procedure of backstepping technique are avoided, which dramatically alleviates the complexity of controller design. Finally, two groups of illustrative examples are employed to demonstrate the effectiveness of the low-complexity decentralized fault-tolerant control scheme under the developed finite-time-convergent differentiator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号