共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the sufficient condition for self-excited oscillation of dynamic systems with gap is given by using qualitative
method of differential equations. 相似文献
4.
Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsible tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified.They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure. 相似文献
5.
Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack,which has very unfavorable effect on the stability and control of the aircraft.A method is developed to control the side force of slender body at high angles of attack,and is verified in wind tunnel.A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°.Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack,and the slop of fitting straight line obtained by the least square method is-0.158.The linear relationship between side force and roll-setting angle provides convenience for developing side force control law of slender body at high angles of attack.Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag.The range of side force coefficient and roll-setting angle are,respectively,-3.2to 3.0 and-20° to 20°.The device is simple,effective,and is of great potential in engineering application. 相似文献
6.
In this paper we get some results about the dynamics of a class of mechanical systems under strong dissipation. We have obtained the stability of the semi-trivial solutions in this class, its asymptotic expansion, and the existence of hyperbolic periodic orbits and their stability was analysed. From these results we have showed the existence of quenching in a particular case. 相似文献
7.
A self-excited three-mass chain system is considered here. For a self-excitation of van der Pol type, the possibility of multi-frequency
oscillations is investigated. Both analytical approximate solutions and numerical simulation are used. The averaging method
is used to establish existence and stability of the normal modes, the two-frequency modes as well as the three-frequency oscillations
solutions. We found at first that the single mode seems to prevail. However a three-frequency solution can be stabilised by
adapting the system slightly. A generic bifurcation diagram is given where all the possible phase portraits are sketched.
The flow turns out to be quite predictable. There is no “room” for chaos or strange attractors. This behaviour is not typical
for systems of coupled oscillators but turns out to be partly related to the involved symmetries as well as the particular
choice of the system parameters. 相似文献
8.
根据相似系统原理和流体网络理论建立了自激振荡脉冲射流喷嘴装置的等效网络模型,利用系统传递函数推导了系统频率特性方程并进行了数值计算。结果表明:喷嘴装置的固有频率主要由喷嘴形状、结构参数、入口流速、射流中压力扰动波波速决定;自激振荡腔腔径、自激振荡腔腔长、上喷嘴直径、下喷嘴直径都对系统频率特性影响很大。提出了相应的自激振荡脉冲射流喷嘴设计准则,即喷嘴装置在最佳阻尼比下产生谐波共振。 相似文献
11.
Flow through a pipeline-cavity system can give rise to pronounced flow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time- and phase-averaged representations provides insight into the small-scale and large-scale concentrations of vorticity, and their consequences on the topological features of streamline patterns, as well as the streamwise and transverse projections of the hydrodynamic contribution to the acoustic power integral. Furthermore, these global approaches allow the definition of effective wavelengths and phase speeds of the vortical structures, which can lead to guidance for physical models of the dimensionless frequency of oscillation. 相似文献
12.
Problems of friction force measurement under conditions of cosmic experiment on the orbit are considered. To increase the measurement accuracy, some arrangements should be made for preventing the onset of a self-vibration mode in mechanical systems with movable contact. Two self-vibration modes are studied. One of them occurs in the case of moderate relative slip velocities of the moving element and the indenter, and the other, in the case of small velocities. The existence and stability conditions are obtained in terms of the mass-elastic parameters of the contact pair. 相似文献
13.
This study presents an experimental method for identification of the backbone curves of cantilevers using the nonlinear dynamics of a van der Pol oscillator. The backbone curve characterizes the nonlinear stiffness and nonlinear inertia of the resonator, so it is important to identify this curve experimentally to realize high-sensitivity and high-accuracy sensing resonators. Unlike the conventional method based on the frequency response under external excitation, the proposed method based on self-excited oscillation enables direct backbone curve identification, because the effect of the viscous environment is eliminated under the linear velocity feedback condition. In this research, the method proposed for discrete systems is extended to give an identification method for continuum systems such as cantilever beams. The actuation is given with respect to both the linear and nonlinear feedbacks so that the system behaves as a van der Pol oscillator with a stable steady-state amplitude. By varying the nonlinear feedback gain, we can produce the self-excited oscillation experimentally with various steady-state amplitudes. Then, using the relationship between these steady-state amplitudes and the corresponding experimentally measured response frequencies, we can detect the backbone curve while varying the nonlinear feedback gain. The efficiency of the proposed method is determined by identifying the backbone curves of a macrocantilever with a tip mass and a macrocantilever subjected to atomic forces, which are representative sources of hardening and softening cubic nonlinearities, respectively. 相似文献
14.
Nonlinear Dynamics - The dynamics of a flexible cantilevered pipe conveying fluid have been researched for several decades. It is known that the flexible pipe undergoes self-excited vibration when... 相似文献
16.
ASYMPTOTICANALYSISOFACLASSOFNONLINEAROSCILLATIONEQUATIONINELECTRICALENGINEERINGChengYou-liang(程友良)(DepartmentofFundamentalCou... 相似文献
17.
Nonlinear Dynamics - This paper investigates the generation of some novel bursting patterns in active control oscillator with multiple time delays. We present the bursting patterns, including... 相似文献
18.
Previous theoretical and experimental studies have shown that some vibrating systems can be stabilized by zero-averaged periodic parametric excitations. It is shown in this paper that some zero-mean random parametric excitations can also be useful for this stabilization. Under some conditions, they can be even more efficient compared to the periodic ones. Two-mass mechanical system with self-excited vibrations is considered for this comparison. The so-called bounded noise is used as a model of the random parametric excitation. The mean-square stability diagrams are obtained numerically by considering an eigenvalue problem for large matrices. 相似文献
20.
The limit cycle of a class of strongly nonlinear oscillation equations of the form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqadwhagaWaaiabgUcaRmXvP5wqonvsaeHbbjxAHXgiofMCY92D% aGqbciab-DgaNjab-HcaOiaadwhacqWFPaqkcqWF9aqpcqaH1oqzca% WGMbGaaiikaiaadwhacaGGSaGabmyDayaacaGaaiykaaaa!50B8!\[\ddot u + g(u) = \varepsilon f(u,\dot u)\] is investigated by means of a modified version of the KBM method, where is a positive small parameter. The advantage of our method is its straightforwardness and effectiveness, which is suitable for the above equation, where g( u) need not be restricted to an odd function of u, provided that the reduced equation, corresponding to =0, has a periodic solution. A specific example is presented to demonstrate the validity and accuracy of our 09 method by comparing our results with numerical ones, which are in good agreement with each other even for relatively large . 相似文献
|