首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A study of the postbuckling and imperfection sensitivity of fixed-end and free-end struts on a Winkler elastic foundation is carried out. The configuration and stability of the postbuckling paths bifurcating from the critical points are analysed. For the most part of foundation stiffness, the corresponding postbuckling paths are shown to be falling with respect to load and be unstable. This indicates that, for almost all values of foundation stiffness, the buckling loads of the struts will be sensitive to imperfections. We also obtain imperfection sensitivity of the struts with respect to geometric imperfections having the shape of buckling modes. Received 30 October 1998, accepted for publication 30 March 1999  相似文献   

2.
The postbuckling response of perfect and geometrically imperfect elastic columns resting on an elastic Winkler type foundation is thoroughly discussed. This is established by employing an approximate analytic technique leading to very reliable results in the vicinity of the critical state. It was found that the critical state of perfect columns is a stable symmetric bifurcation point and consequently there is no sensitivity to initial geometrical imperfections. Moreover, a simple but readily analyzed mechanical model is proposed to simulate the salient features of buckling mechanism of the column on elastic foundation with those of the model. The simplicity, reliability and efficiency of the proposed analysis as well as the successful modeling of the buckling mechanism of the column by that of a single mode mechanical model are illustrated with the aid of numerical examples.  相似文献   

3.
4.
Novosibirsk. Translated from Prikladnaya Mekhanaika i Tekhnicheskaya Fizika, No. 2, pp. 130–142, March–April, 1994.  相似文献   

5.
6.
7.
The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is investigated in this paper. A nonlocal continuum mechanics formulation, which takes the small length scale effects into consideration, is utilized to derive the governing fourth-order partial differential equations. The Fourier series method is used for the case of the pinned–pinned boundary condition of the tube. The Galerkin technique is utilized to find a solution of the governing equation for the case of the clamped–clamped boundary. Closed-form expressions for the critical flow velocity are obtained for different values of the Winkler and Pasternak foundation stiffness parameters. Moreover, new and interesting results are also reported for varying values of the nonlocal length parameter. It is observed that the nonlocal length parameter along with the Winkler and Pasternak foundation stiffness parameters exert considerable effects on the critical velocities of the fluid flow in nanotubes.  相似文献   

8.
Buckling and imperfection sensitivity are the primary considerations in analysis and design of thin shell structures. The objective here is to develop accurate and efficient capabilities to predict the postbuckling behavior of shells, including imperfection sensitivity. The approach used is based on the Lyapunov–Schmidt–Koiter (LSK) decomposition and asymptotic expansion in conjunction with the finite element method. This LSK formulation for shells is derived and implemented in a finite element code. The method is applied to cylindrical and spherical shells. Cases of linear and nonlinear prebuckling behavior, coincident as well as non-coincident buckling modes, and modal interactions are studied. The results from the asymptotic analysis are compared to exact solutions obtained by numerically tracking the bifurcated equilibrium branches. The accuracy of the LSK asymptotic technique, its range of validity, and its limitations are illustrated.  相似文献   

9.
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes (SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection, geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.  相似文献   

10.
The nonlinear resonance response of an electrostatically actuated nanobeam is studied over the near-half natural frequency with an axial capacitor controller. A graphene sensor deformed by the vibrations of the nanobeam is used to produce the voltage signal.The voltage of the vibration graphene sensor is used as a control signal input to a closedloop circuit to mitigate the nonlinear vibration of the nanobeam. An axial control force produced by the axial capacitor controller can transform the frequency-amplitude curves from nonlinear to linear. The necessary and sufficient conditions for guaranteeing the system stability and a saddle-node bifurcation are studied. The numerical simulations are conducted for uniform nanobeams. The nonlinear terms of the vibration system can be transformed into linear ones by applying the critical control voltage to the system. The nonlinear vibration phenomena can be avoided, and the vibration amplitude is mitigated evidently with the axial capacitor controller.  相似文献   

11.
12.
According to the large amplitude equation of the circular plate on nonlinear elastic foundation , elastic resisting force has linear item , cubic nonlinear item and resisting bend elastic item. A nonlinear vibration equation is obtained with the method of Galerkin under the condition of fixed boundary. Floquet exponent at equilibrium point is obtained without external excitation. Its stability and condition of possible bifurcation is analysed. Possible chaotic vibration is analysed and studied with the method of Melnikov with external excitation . The critical curves of the chaotic region and phase figure under some foundation parameters are obtained with the method of digital artificial.  相似文献   

13.
A perturbation analysis for the impact torsional buckling of imperfective elastic cylindrical shells subjected to a step torque is given..The imperfection is supposed to be small and has arbitrary form.It is shown that only the imperfection which has the shape of static torsional buckling mode could influence the critical step torque.Finally a formula is presented for the critical step torque.  相似文献   

14.
Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak's foundation is studied in this paper. Timoshenko's beam model and nonlocal elasticity theory are employed for formulation of the problem. The equations of motion are derived using Hamilton's principals by calculating kinetic energy, strain energy and work due to viscoelastic foundation. The effects of various parameters such as wavenumber, non-homogeneous index, nonlocal parameter and three parameters of foundation are performed on the phase velocity of the nanobeam. The obtained results indicate that some parameters such as non-homogeneous index, nonlocal parameter and wavenumber have significant effect on the response of the system.  相似文献   

15.
G. G. Sheng  X. Wang  G. Fu  H. Hu 《Nonlinear dynamics》2014,78(2):1421-1434
This paper reports the result of an investigation on the nonlinear vibrations of functionally graded cylindrical shell surrounded by an elastic foundation, based on Hamilton’s principle, von Kármán nonlinear theory, and the first-order shear deformation theory. Material properties are assumed to be temperature dependent. The surrounding elastic medium is modeled as Winkler foundation model, Pasternak foundation model, and nonlinear foundation model. Galerkin’s method is utilized to convert the governing partial differential equations to nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Considering the primary resonance case, the method of multiple scales is used to study the frequency response of nonlinear vibrations and the softening/hardening behavior. Parametric effects on the nonlinear vibrations are investigated.  相似文献   

16.
17.
18.
19.
The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion(PWE) method. In order to reveal the unique wave propagation characteristics of such a model, the band structures of locally resonant(LR) elastic PC Eul...  相似文献   

20.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号