首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为弥补标准检测方法的不足,建立了石墨消解-ICP-MS法同时检测铜精矿中Pb、Cd、As 和Hg等4种有害元素。确定了样品前处理和仪器分析条件。用铜精矿标准样品和参考样品分别进行7次重复实验,Pb、Cd和As的检测结果均在标准值范围内,Hg的检测结果与参考值基本一致。7次重复检测结果的变异系数符合GB/T 27417-2017《合格评定 化学分析方法确认和验证指南》要求。选择5种不同物相铜精矿作为待测样品,通过与标准方法比对,两种方法检测结果的绝对差符合标准方法的再现性要求,说明本方法适用于不同种类的铜精矿。本方法操作简单,可同时测定多种有害元素,实用性强。  相似文献   

2.
建立微波消解–电感耦合等离子体原子发射光谱法同时测定儿童唇膏产品中硼、铝、钛、铬、锰、钴、镍、铜、锌、砷、硒、锶、镉、锡、锑、钡、汞、铅和铋等19种有害元素。取样量为0.5 g时,硝酸用量为5.0 mL,过氧化氢溶液(质量分数为30%)用量为2.0 mL,采用微波消解法处理样品。优化的电感耦合等离子体原子发射光谱仪工作条件:射频功率为1.20 kW;等离子体气流量为12.00 L/min;雾化气流量为0.70 L/min;辅助气流量为1.00 L/min;蠕动泵转速为12 r/min (分析)和80 r/min (清洗)。19种元素的质量浓度在0.10~5.00 mg/L范围内与其对应的信号强度成良好线性关系,相关系数均大于0.999,检出限为0.12~22.80 μg/L,加标回收率为80.9%~96.4%,测定结果的相对标准偏差为0.38%~4.89%(n=6)。  相似文献   

3.
微波消解ICP-MS法同时测定蔬菜中14种元素   总被引:4,自引:0,他引:4  
研究了蔬菜中Ag、Al、As、Cd、Co、Cr、Cu、Mn、Ni、Pb、Sb、Se、Zn、Hg 14种元素同时准确测定的方法。用具孔电子控温加热板蒸干蔬菜样品,高压密闭微波化学工作站消解蔬菜干样,采用电感耦合等离子体质谱(ICP-MS)测定蔬菜中的14种元素。优化了微波消解条件和仪器测定条件。所有标准曲线的线性范围在0~200.0μg/L之间,回归方程的相关系数皆大于0.999,方法的检出限均小于0.22μg/L,加标回收率在81%~118%之间,精密度RSD小于4.44%;西红柿叶国家标准样品(GSBZ 51001-94)的验证分析,测定值均在保证值范围内。本方法具有快速、准确、可靠、灵敏度高及多元素同时分析等特点,可进行批量蔬菜样品测定,赋予"无公害蔬菜市场准入制度"的实施。  相似文献   

4.
比较了密闭容器消解、微波消解两种消解方法的消解效果,并建立了微波消解-电感耦合等离子体质谱(ICP-MS)法测定中药材(CTM)中铜砷镉汞铅等5种有害元素含量的分析方法,对各元素的线性关系良好(r=0.9998~1.0000),检出限为0.005μg/g(Hg)~0.056μg/g(Cu),标准物测定回收率均在84.2%~101%,因其低检出限、高灵敏度,本方法能满足中药材样品质量控制中5种有害元素的测定要求。另外利用本方法对24种中药材中5种有害元素含量进行了测定,结果表明中药材中有害元素含量超标问题严重,必须在生产过程中予以重视。  相似文献   

5.
刘晶  郑楚光  贾小红  徐杰英 《分析化学》2003,31(11):1360-1363
应用微波消解和电感耦合等离子体发射光谱法同时测定煤灰中的常量、少量和微量元素Si、Al、Ca、Fe、Mg、Ti、K、Ba、Mn、V、Pb、Cr、Cu和Zn。考察了微波消解体系和消解条件,0.1g煤灰用10mL硝酸和1mL氢氟酸分解,加入10mL4%硼酸溶液分解氟化物沉淀。用本法测定煤飞灰标准参考物质的结果与标准值一致。方法准确,快速,回收率为94.2%~102.3%;RSD均小于5%。  相似文献   

6.
毛细管气相色谱内标法同时测定食品中8种防腐剂   总被引:14,自引:0,他引:14  
食品防腐剂具有杀灭或抑制微生物增殖的作用而被广泛应用在各类食品、饮料中。在食品中添加适量的防腐剂虽然可防止变质,延长食品的保质期,但过量食用对人体有一定毒性。利用气相色谱法测定食品中脱氢乙酸、丙酸、苯甲酸、山梨酸、对羟基苯甲酸酯类(尼泊金酯)已有报道,但方法大多采用水蒸气蒸馏或低沸点溶剂提取,外标法定量其中  相似文献   

7.
建立了ICP-OES内标法同时测定纺织品中砷、锑、铅、镉、铬、钴、铜、镍、汞等9种有害元素的检测方法.采用钇(Y)作为内标添加物,有效补偿了酸性汗液中钠元素造成的背景干扰.结果表明:砷、锑、铅、镉、铬、钴、铜、镍、汞等9种元素的谱线强度与其浓度在(0.03~0.30)~10 mg/L范围内均具有良好的线性关系,检出限分...  相似文献   

8.
建立了微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中多种主次元素的分析方法。采用硝酸-氢氟酸-双氧水体系在微波消解仪中消解土壤样品,待消解完成后加入高氯酸驱赶氢氟酸,盐酸溶解盐类物质,将土壤中所有元素的矿物晶格破坏使待测溶液全部进入试液,采用ICP-AES法测定。通过筛选合适分析谱线和合理设置背景扣除位置提高样品分析中的精密度和准确度。选用国家土壤标准物质进行方法验证,绝大多数实验结果与标准值吻合,相对标准偏差(RSD)小于5%。方法具有同时测定土壤样品中多种元素、试剂用量少、操作简单等优点,表明方法适合大批量土壤中主次元素的快速检测。  相似文献   

9.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

10.
阴极铜是重要的工业原料,它的杂质元素含量对其品位确定是非常关键的指标,国内外有关阴极铜中杂质化学成分的测定方法大多用分光光度法和原子吸收光谱法。化学方法分析流程冗长,并用许多有机试剂,操作繁琐。ICP-AES法具有检出限低,线性范围宽,精密度好,可多元素同时测定,分析速度快等特点。本文采用ICP-AES法测定阴极铜中杂质元素,满足了生产的需要。  相似文献   

11.
采用微波消解前处理样品,电感耦合等离子体质谱检测,同时测定了成品烟烟丝中Cr、Ni、Cu、As、Se、Cd、Pb等7种微量元素。方法的回收率92.8%~120%,检出限25.2~245 ng/L,相对标准偏差均小于10%。分析和比较了5种国外卷烟和10种国内卷烟烟丝中7种元素的含量。  相似文献   

12.
建立了微波消解-氢化物发生原子荧光光谱法(HG-AFS)同时测定出口食用甲鱼中As、Hg残留量的方法,并对HG-AFS工作参数及条件进行了优化和选择。As检出限为0.056μg/L,Hg检出限为0.0071μg/L;相对标准偏差As为0.4%(n=11,ρAs=20μg/L),Hg为0.7%(n=11,ρHg=10μg/L);回收率范围为92%~99%。本法已用于出口食用水生活甲鱼中As、Hg残留量的检测。  相似文献   

13.
The consumption of soft drink beverages has increased in the last few years around the world and it is related to the diversity of brands and flavours available, increasing also the risk of ingestion of compounds considered non-beneficial to the health of consumers. In this study, fast, easy and simple method of analysis for direct determination of As, Pb, Cd, Sb, Hg, Cu, Zn, Fe, Al, Cr, Sn, Co, Mn and Ni in soft drink samples using quadrupole inductively coupled plasma mass spectrometry (Q-ICP–MS) was validated. The estimated detection limits, practical quantification limits, linearity (linear dynamic ranges and method linearity), accuracy (trueness and precision) and measurement uncertainty parameters were studied under optimised (Q-ICP–MS) conditions. The method showed that the estimated detection limits were varied between 0.02 and 2.403 µg/L, and the quantification limits were varied between 0.5 and 20 µg/L. The mean recoveries ± standard deviations at different spiking levels were varied between 75.03 ± 0.62% and 117.07 ± 2.83% and the coefficients of variation were varied between 0.49% and 9.79%. The method trueness was confirmed by using four different certified reference materials (soft drinks and treated water) purchased from FAPAS (Food Analysis Performance Assessment Scheme) and all obtained results were within satisfactory ranges and had acceptable recovery and Z-score values. The method precision, in terms of relative standard deviation, was below 4.88%. The method uncertainty expressed as expanded uncertainty of all validated elements was found to be ≤22.52%. The results obtained make the method suitable for accurate determination of validated elements in different kinds of soft drink samples at these low concentration values. Validated method was used for the determination of metallic contaminants in 40 commercial soft drink samples and the results were compared with the provisional guideline of the elements stated by Egyptian, WHO and European standards in drinking and potable bottled natural mineral water.  相似文献   

14.
ICP-AES法同时测定石英砂中的痕量元素   总被引:3,自引:0,他引:3  
采用微波溶样,并通过条件试验,建立了微波溶样ICP-AES法同时测定石英砂中13种痕量元素的分析方法并已应用于实际样品的分析,方法的相对标准偏差≤10%,加标回收率为90%-107%。  相似文献   

15.
A study has been conducted to assess the quality and comparability of measurement of aqua-regia-soluble cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc in urban soils within a small cohort of European research laboratories specializing in soil science or environmental analytical chemistry. An initial survey indicated that highly variable levels of analytical quality control (e.g. use of certified reference materials) were routinely implemented in participant laboratories. When a set of soil samples—differing in metal contents and in characteristics such as pH and organic-matter content—were exchanged and analysed, approximately 20% of results differed from target values by more than 25%. A principal-component analysis was applied to data for chromium, copper, nickel, lead, and zinc, and proved successful in assessing overall laboratory performance. The study indicates that greater prominence needs to be given to quality assurance and control if comparable data are to be generated in international, collaborative research projects.  相似文献   

16.
The revised (four-step) BCR sequential extraction procedure has been applied to fractionate the chromium, copper, iron, manganese, nickel, lead and zinc contents in urban soil samples from public-access areas in five European cities. A preliminary inter-laboratory comparison was conducted and showed that data obtained by different laboratories participating in the study were sufficiently harmonious for comparisons to be made between cities and land types (e.g. parks, roadside, riverbanks, etc.). Analyte recoveries by sequential extraction, with respect to direct aqua regia digestion, were generally acceptable (100 ± 15%). Iron, nickel and, at most sites, chromium were found mainly in association with the residual phase of the soil matrix. Copper was present in the reducible, oxidisable and residual fractions, whilst zinc was found in all four sequential extracts. Manganese was strongly associated with reducible material as, in some cities, was lead. This is of concern because high lead concentrations were present in some soils (>500 mg kg−1) and the potential exists for remobilisation under reducing conditions. As would be expected, extractable metal contents were generally highest in older, more heavily industrialised cities. Copper, lead and zinc showed marked (and often correlated) variations in concentrations between sites within the same city whereas manganese and, especially, iron, did not. No overall relationships were, however, found between analyte concentrations and land use, nor between analyte partitioning and land use.  相似文献   

17.
Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of minor and major elements present in apple juices. Prior to ICP-AES measurement, samples were diluted with nitric acid or digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of different types of sample preparation procedures are discussed. The direct measurement compared to closed microwave dissolution was found to be the best sample preparation procedure. Prior to the measurements the ICP-AES method was validated and optimized for the determination of elements in apple juices. For diluted apple juice samples the lowest limits of detection (LOD) were obtained for Ba and Cd (< 20 μg L− 1), moderate ones for Cu, Mn, Ni, Fe, Ag, Ca, Cr, Zn, Mg, and Sr (20–100 μg L− 1), and the highest LODs for K, Pb, Na, and Al (> 110 μg L− 1). The results obtained for the repeatability (< 0.9%), the intermediate precision (< 4.5%), the day-to-day reproducibility (< 5.2%), and the overall uncertainty of measurement (approx. 4–7%) for all elements analyzed demonstrated the good applicability of the proposed method. Differences in major element content in fresh and commercial apple juice are discussed.  相似文献   

18.
微波消解-ICP-MS测定40种中药材中的5种有毒元素   总被引:5,自引:0,他引:5  
建立了微波消解-电感耦合等离子体质谱(ICP-MS)法测定中药材中Cu,As,Cd,Hg,Pb 5种有毒元素的方法,采用In为内标,利用其回收率对以上5种元素的测定结果进行校正。该方法对5种元素的检出限分别为0.063,0.015,0.018,0.006,0.056μg/g,相对标准偏差为0.2%~4.0%,In元素加标回收率为96.7%~104.5%,说明该方法灵敏度高,结果准确。利用该方法对40种不同产地中药材中5种有毒元素进行了测定,结果表明中药材中有毒元素超标问题相当严重,必须在中药材生产过程中予以高度重视。  相似文献   

19.
微波消解-端视ICP-AES测定茶叶中微量重金属元素   总被引:6,自引:0,他引:6  
采用微波消解-端视等离子体原子发射光谱(ICP-AES)测定茶叶中微量重金属元素Pb、As、Cd、Cu、Fe,并对ICP-AES工作参数及条件进行了优化和选择。Pb、As、Cd、Cu、Fe的检出限分别为2.9×10-3μg/mL、5.2×10-3μg/mL、0.056×10-3μg/mL、0.55×10-3μg/mL、0.59×10-3μg/mL,线性范围为0~10000μg/L,相对标准偏差为1.7%~8.5%;回收率为90%~104%。该方法与国标法比较,结果无显著性差异。本法能用于茶叶测定。  相似文献   

20.
微波消解-原子吸收光谱法测定蚕蛹中的微量元素   总被引:2,自引:0,他引:2  
分别采用FAAS和GFAAS方法,测定蚕蛹样品中的常见微量元素及有害重金属元素。对微波消解条件和测定方法进行了探讨和优化,并用标准物质贻贝验证,获得较满意的准确度和精密度。方法可用于蚕蛹样品及同类产品的微量元素元素测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号