首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present article, we investigate the properties of motion in Hamiltonian systems of two and three degrees of freedom, using the distribution of the values of two new dynamical parameters. The distribution functions of the new parameters define the S(g) and the S(w) dynamical spectra. The first spectrum definition that is the S(g) spectrum will be applied in a Hamiltonian system of two degrees of freedom (2D), while the S(w) dynamical spectrum will be deployed in a Hamiltonian system of three degrees of freedom (3D). Both Hamiltonian systems, describe a very interesting dynamical system which displays a large variety of resonant orbits, different chaotic components, and also several sticky regions. We test and prove the efficiency and the reliability of these new dynamical spectra, in detecting tiny ordered domains embedded in the chaotic sea, corresponding to complicated resonant orbits of higher multiplicity. The results of our extensive numerical calculations suggest that both dynamical spectra are fast and reliable discriminants between different types of orbits in Hamiltonian systems, while requiring very short computation time in order to provide solid and conclusive evidence regarding the nature of an orbit. Furthermore, we establish numerical criteria in order to quantify the results obtained from our new dynamical spectra. A?comparison to other previously used dynamical indicators, reveals the leading role of the new spectra.  相似文献   

2.
We study the nature of motion in a 3D potential composed of perturbed elliptic oscillators. Our technique is to use the results obtained from the 2D potential in order to find the initial conditions generating regular or chaotic orbits in the 3D potential. Both 2D and 3D potentials display exact periodic orbits together with extended chaotic regions. Numerical experiments suggest that the degree of chaos increases rapidly as the energy of the test particle increases. About 97?% of the phase plane of the 2D system is covered by chaotic orbits for large energies. The regular or chaotic character of the 2D orbits is checked using the S(c) dynamical spectrum, while for the 3D potential we use the S(c) spectrum, along with the P(f) spectral method. Comparison with other dynamical indicators shows that the S(c) spectrum gives fast and reliable information about the character of motion.  相似文献   

3.
The aim of this work was to review and also explore even further the escape properties of orbits in a dynamical system of a two-dimensional perturbed harmonic oscillator, which is a characteristic example of open Hamiltonian systems. In particular, we conduct a thorough numerical investigation distinguishing between trapped (ordered and chaotic) and escaping orbits, considering only unbounded motion for several energy levels. It is of particular interest, to locate the basins of escape toward the different escape channels and connect them with the corresponding escape periods of the orbits. We split our examination into three different cases depending on the function of the perturbation term which determines the number of escape channels on the physical space. In every case, we computed extensive samples of orbits in both the physical and the phase space by integrating numerically the equations of motion as well as the variational equations. In an attempt to determine the regular or chaotic nature of trapped motion, we applied the SALI method as a chaos detector. It was found that in all studied cases, regions of trapped orbits coexist with several basins of escape. It was also observed, that for energy levels very close to the escape value, the escape times of orbits are large, while for values of energy much higher than the escape energy, the vast majority of orbits escape very quickly or even immediately to infinity. The larger escape periods have been measured for orbits with initial conditions in the boundaries of the escape basins and also in the vicinity of the fractal structure. Most of the current outcomes have been compared with previous related work. We hope that our results will be useful for a further understanding of the escape mechanism of orbits in open Hamiltonian systems with two degrees of freedom.  相似文献   

4.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

5.
We present a new dynamical model describing 3D motion in non-axially symmetric galaxies. The model covers a wide range of galaxies from a disk system to an elliptical galaxy by suitably choosing the dynamical parameters. We study the regular and chaotic character of orbits in the model and try to connect the degree of chaos with the parameter describing the deviation of the system from axial symmetry. In order to obtain this, we use the Smaller ALingment Index (SALI) method to extensive samples of orbits obtained by integrating numerically the equations of motion, as well as the variational equations. Our results suggest that the influence of the deviation parameter on the portion of chaotic orbits strongly depends on the vertical distance z from the galactic plane of the orbits. Using different sets of initial conditions, we show that the chaotic motion is dominant in galaxy models with low values of z, while in the case of stars with large values of z the regular motion is more abundant, both in elliptical and disk galaxy models.  相似文献   

6.
This paper sheds new insights into the stability transformation method (STM) for chaos control of dynamical system. The STM is applied to stabilize both multiple equilibrium points and unstable periodic orbits (UPOs) embedded in the chaotic attractor of a new 3D autonomous system. Firstly, the different equilibrium points of chaotic system are stabilized with STM by choosing specific initial points and involutory matrices. Then, the stability matrix is derived based on a priori information of equilibrium points, which indicates that the non-involutory matrix can also be used to control the unstable equilibrium points of chaotic systems. Finally, it is found that the STM can be regarded as a special form of speed feedback control method (SFCM), which facilitates the practical implementation of STM scheme. The chaotic system can be controlled by adopting the corresponding feedback control strategy once the stability matrices are determined. In this way, the blindness of choice for control strategy in the SFCM is avoided, and the difficulty for determining the state variables to be controlled is overcome.  相似文献   

7.
To investigate non-linear dynamical systems, like for instance artificial satellites, Solar System, exoplanets or galactic models, it is necessary to have at hand several tools, such as a reliable dynamical indicator.The aim of the present work is to test a relatively new fast indicator, the Mean Exponential Growth factor of Nearby Orbits (MEGNO), since it is becoming a widespread technique for the study of Hamiltonian systems, particularly in the field of dynamical astronomy and astrodynamics, as well as molecular dynamics.In order to perform this test we make a detailed numerical and statistical study of a sample of orbits in a triaxial galactic system, whose dynamics was investigated by means of the computation of the Finite Time Lyapunov Characteristic Numbers (FT-LCNs) by other authors.  相似文献   

8.
The case of the classical Hill problem is numerically investigated by performing a thorough and systematic classification of the initial conditions of the orbits. More precisely, the initial conditions of the orbits are classified into four categories: (i) non-escaping regular orbits; (ii) trapped chaotic orbits; (iii) escaping orbits; and (iv) collision orbits. In order to obtain a more general and complete view of the orbital structure of the dynamical system, our exploration takes place in both planar (2D) and the spatial (3D) version of the Hill problem. For the 2D system, we numerically integrate large sets of initial conditions in several types of planes, while for the system with three degrees of freedom, three-dimensional distributions of initial conditions of orbits are examined. For distinguishing between ordered and chaotic bounded motion, the Smaller Alignment Index method is used. We managed to locate the several bounded basins, as well as the basins of escape and collision and also to relate them to the corresponding escape and collision time of the orbits. Our numerical calculations indicate that the overall orbital dynamics of the Hamiltonian system is a complicated but highly interested problem. We hope our contribution to be useful for a further understanding of the orbital properties of the classical Hill problem.  相似文献   

9.
Chaos in a pendulum with feedback control   总被引:4,自引:0,他引:4  
We study chaotic dynamics of a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small inductance, so that the feedback control system reduces to a periodic perturbation of a planar Hamiltonian system. This Hamiltonian system can possess multiple saddle points with non-transverse homoclinic and/or heteroclinic orbits. Using Melnikov's method, we obtain criteria for the existence of chaos in the pendulum motion. The computation of the Melnikov functions is performed by a numerical method. Several numerical examples are given and the theoretical predictions are compared with numerical simulation results for the behavior of invariant manifolds.  相似文献   

10.
The dead-zone nonlinearity is frequently encountered in many industrial automation equipments and its presence can severely compromise control system performance. In this work, an adaptive variable structure controller is proposed to deal with a class of uncertain nonlinear systems subject to an unknown dead-zone input. The adopted approach is primarily based on the sliding mode control methodology but enhanced by an adaptive fuzzy algorithm to compensate the dead-zone. Using Lyapunov stability theory and Barbalat??s lemma, the convergence properties of the closed-loop system are analytically proven. In order to illustrate the controller design methodology, an application of the proposed scheme to a chaotic pendulum is introduced. A comparison between the stabilization of general orbits and unstable periodic orbits embedded in chaotic attractor is carried out showing that the chaos control can confer flexibility to the system by changing the response with low power consumption.  相似文献   

11.
The study of chaos has generated enormous interest in exploring the complexity of the behavior in nature and in technology. Many of the important features of chaotic dynamical systems can be seen using experimental and computational methods in simple nonlinear mechanical systems or electronic circuits. Starting with the study of a chaotic nonlinear mechanical system (driven damped pendulum) or a nonlinear electronic system (circuit Chua) we introduce the reader into the concepts of chaos order in Sharkovsky's sense, and topological invariants (topological entropy and topological frequencies). The Kirchhoff's circuit laws are a pair of laws that deal with the conservation of charge and energy in electric circuits, and the algebraic theory of graphs characterizes these linear systems in terms of cycles and cocycles (or cuts). Here we discuss methods (topological semiconjugacy to piecewise linear maps and Markov graphs) to find a similar situation for the nonlinear dynamics, to understanding chaotic dynamics. Thus to chaotic dynamics we associate a Markov graph, where the dynamical and topological invariants will be seen as graph theoretical quantities.  相似文献   

12.
In this paper, we construct a novel four dimensional fractional-order chaotic system. Compared with all the proposed chaotic systems until now, the biggest difference and most attractive place is that there exists no equilibrium point in this system. Those rigorous approaches, i.e., Melnikov??s and Shilnikov??s methods, fail to mathematically prove the existence of chaos in this kind of system under some parameters. To reconcile this awkward situation, we resort to circuit simulation experiment to accomplish this task. Before this, we use improved version of the Adams?CBashforth?CMoulton numerical algorithm to calculate this fractional-order chaotic system and show that the proposed fractional-order system with the order as low as 3.28 exhibits a chaotic attractor. Then an electronic circuit is designed for order q=0.9, from which we can observe that chaotic attractor does exist in this fractional-order system. Furthermore, based on the final value theorem of the Laplace transformation, synchronization of two novel fractional-order chaotic systems with the help of one-way coupling method is realized for order q=0.9. An electronic circuit is designed for hardware implementation to synchronize two novel fractional-order chaotic systems for the same order. The results for numerical simulations and circuit experiments are in very good agreement with each other, thus proving that chaos exists indeed in the proposed fractional-order system and the one-way coupling synchronization method is very effective to this system.  相似文献   

13.
This letter proposes a new 3D quadratic autonomous chaotic system which displays an extremely complicated dynamical behavior over a large range of parameters. The new chaotic system has five real equilibrium points. Interestingly, this system can generate one-wing, two-wing, three-wing and four-wing chaotic attractors and periodic motion with variation of only one parameter. Besides, this new system can generate two coexisting one-wing and two coexisting two-wing attractors with different initial conditions. Furthermore, the transient chaos phenomenon happens in the system. Some basic dynamical behaviors of the proposed chaotic system are studied. Furthermore, the bifurcation diagram, Lyapunov exponents and Poincaré mapping are investigated. Numerical simulations are carried out in order to demonstrate the obtained analytical results. The interesting findings clearly show that this is a special strange new chaotic system, which deserves further detailed investigation.  相似文献   

14.
Peng  Mingshu  Yi  Xiaoyu  Cheng  Ranran 《Nonlinear dynamics》2023,111(10):9201-9213

It is an awfully difficult task to design an efficient numerical method for bifurcation diagrams, the graphs of Lyapunov exponents, or the topological entropy about discrete dynamical systems by linear/nonlinear diffusion with the Direchlet/Neumann- boundary conditions. Until now there are less works concerned with such a problem. In this paper, we propose a scheme about bifurcating analysis in a series of discrete-time dynamical systems with linear/nonlinear diffusion terms under the periodic boundary conditions. The complexity of dynamical behaviors caused by the diffusion term are to be determined. Bifurcation diagrams are shown by numerical simulation and chaotic behavior (chaotic Turing patterns) is demonstrated by computing the largest Lyapunov exponent. Our theoretical model can give an interesting case study about the phenomenon: the individuals exhibit a very simple dynamics but the groups with linear/nonlinear coupling can own a complex dynamics including fluctuation, periodicity and even chaotic behavior. We find that diffusion can trigger chaotic behavior in the present system and there exist multiple Turing patterns. It is interesting as regular or chaotic patterns can be reported in this study. Chaotic orbits emerge when exploring further in the diffusion coefficient space, and such a behavior is entirely absent in the corresponding continuous time-space system. The method proposed in the present paper is innovative and the conclusion is novel.

  相似文献   

15.
The Lorenz–Stenflo system serves as a model of the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere. In the present paper, we study the Shil’nikov chaos which arises in the 4D Lorenz–Stenflo system. The analytical and numerical results constitute an application of the Shil’nikov theorems to a 4D system (whereas most results present in the literature deal with applying the Shil’nikov theorems to 3D systems), which allows for the study of chaos along homoclinic and heteroclinic orbits arising as solutions to the Lorenz–Stenflo system. We verify the observed chaos via competitive modes analysis—a diagnostic for chaotic systems. We give an analytical test, completely in terms of the model parameters, for the Smale horseshoe chaos near homoclinic orbits of the origin, as well as for the case of specific heteroclinic orbits. Numerical results are shown for other cases in which the general analytical method becomes too complicated to apply. These results can be extended to more complicated higher-dimensional systems governing plasmas, and, in particular, may be used to shed light on period-doubling and Smale horseshoe chaos that arises in such models.  相似文献   

16.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

17.
The three-state test (3ST) is a method based on ordinal pattern analysis for detecting chaos and determining the period in time series. For some well-known chaotic dynamical systems, we showed that the test behaves similar to Lyapunov exponents. However, the 3ST is detecting quasi-periodic motions both as regular and non-regular. In this paper, we propose to use the sensitivity of its chaos indicator \(\lambda \) on time delay for clear discernment between quasi-periodic and chaotic dynamics. Simulation results obtained using the logistic map and the sine-circle map attest that the sensitivity of \(\lambda \) on time delay is sufficient for the detection of the periodic and quasi-periodic route to chaos. A comparison with the permutation entropy confirms the effectiveness of the 3ST for the analysis of discrete time series data.  相似文献   

18.
We study iteration of polynomials on symmetric stochastic matrices. In particular, we focus on a certain one-parameter family of quadratic maps which exhibits chaotic behavior for a wide range of the parameters. The well-known dynamical behavior of the quadratic family on the interval, and its dependence on the parameter, is reproduced on the spectrum of the stochastic matrices. For certain subclasses of stochastic matrices the referred dynamical behavior is also obtained in the matrix entries. Since a stochastic matrix characterizes a Markov chain, we obtain a discrete dynamical system on the space of reversible Markov chains. Therefore, depending on the parameter, there are initial conditions for which the corresponding reversible Markov chains will lead under iteration to a fixed point, to a periodic point, or to an aperiodic point. Moreover, there are sensitivity to initial conditions and the coexistence of infinite repulsive periodic orbits, both features of chaos.  相似文献   

19.
In this work, we try to shed some light to the nature of orbits in a three-dimensional (3D) potential of a perturbed harmonic oscillator with eight possible channels of escape, which was chosen as an interesting example of open 3D Hamiltonian systems. In particular, we conduct a thorough numerical investigation distinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering unbounded motion for several values of the energy. In an attempt to discriminate safely and with certainty between ordered and chaotic motion, we use the Smaller ALingment Index (SALI) detector, computed by integrating numerically the basic equations of motion as well as the variational equations. Of particular interest is to locate the basins of escape toward the different escape channels and connect them with the corresponding escape periods of the orbits. We split our study into three different cases depending on the initial value of the $z$ coordinate which was used for launching the test particles. We found that when the orbits are started very close to the primary $(x,y)$ plane the respective grids exhibit a high degree of fractalization, while on the other hand for orbits with relatively high values of $z_0$ several well-formed basins of escape emerge thus reducing significantly the fractalization of the grids. It was also observed that for values of energy very close to the escape energy the escape times of orbits are large, while for energy levels much higher than the escape energy the vast majority of orbits escape extremely fast or even immediately to infinity. We hope our outcomes to be useful for a further understanding of the escape process in open 3D Hamiltonian systems.  相似文献   

20.

An undamped elastic pendulum being a nonintegrable Hamiltonian system always has some chaotic trajectories observable on choosing appropriate initial conditions. This is true even if the pendulum is in libration with small amplitude; in this situation, the pendulum may be seen as a nearly integrable system. Since the measure of the set of the local chaotic trajectories in the phase space may be very small, the trajectories are hard to locate. However, the emergence of widespread chaos when the elastic pendulum is at autoparametric resonance is well-documented. The transition from the local and the widespread chaos is typically established through the Chirikov overlap criterion that approximates the phase portrait around a resonance using a one degree-of-freedom pendulum Hamiltonian. We argue in this paper that the aforementioned transition in the elastic pendulum is due to interaction between two resonances of same kind and their coexistence can be analytically located using perturbation methods, like the method of averaging, whereas the technique of the pendulum Hamiltonian is inapplicable. Furthermore, in the course of validating the result numerically, we also showcase the order-chaos-order transition in the elastic pendulum using the fast Lyapunov indicator.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号