首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
乙基氰乙基纤维素/丙烯酸在一定的浓度范围内形成具有鲜艳色彩的胆甾型液晶体系。液晶溶液中的丙烯酸经聚合后,可以得到保持有胆甾相结构的彩色的乙基氰乙基纤维素/聚丙烯酸复合物膜。氰乙基取代度分布的宽度影响到液晶溶液和复合物膜中胆甾相反射可见光的能力和选择性。彩色的复合物膜具有较高的热稳定性,在100℃以下其色彩不随温度而改变。加入交联剂可以得到交联的彩色复合物膜,该复合物膜具有较好的耐水性。交联的复合物膜吸水后,其彩色向红色方向移动。除去水分后,又可回复到原来的色彩。未交联的复合物膜在吸水以后,表面被破坏,颜色消失。  相似文献   

2.
乙基氰乙基纤维素—苯乙烯溶液在浓度足够高时,形成胆甾型液晶体系。自由基引发苯乙烯聚合,得到乙基氰乙基纤维素—聚苯乙烯复合物。该复合物既保持了乙基氰乙基纤维素的结晶结构,又保持了聚苯乙烯的无定形结构。然而,在各向同性状态下聚合得到的复合物中,乙基氰乙基纤维素以球状晶粒的形式分散在聚苯乙烯相中。在各向异性状态下聚合得到的复合物中,乙基氰乙基纤维素以圆柱状晶粒的形式分散在聚苯乙烯相中,并在更高结构层次上形成局部取向的层状结构。  相似文献   

3.
ECEC/AA液晶溶液取向态织构及其自由基聚合   总被引:2,自引:0,他引:2  
利用光学显微镜和小角光散射等方法研究了乙基氰乙基纤维素(ECEC)/丙烯酸(AA)取向液晶态织构。在切应力作用下ECEC/AA液晶溶液形成带状结构,其中大分子链沿切应力方向呈锯齿形取向,溶液浓度越高,取向液晶溶液中大分子链有序性越高,带状织构中的条带愈窄。通过紫外光引发聚合方式获得了保持取向液晶态中带状织构的复合物膜。  相似文献   

4.
乙基醋酸纤维素/二氯乙酸胆甾型液晶溶液的液晶相和各向同性相在两相共存时,表现出明显的相分离行为。在胆甾相中,液晶相的织态结构随浓度而变化,可以形成园盘结构、油纹结构以及取向微区的无规堆集结构。在前两种结构中,分子链排列层垂直于玻片表面,螺旋结构的轴向与玻片表面平行。  相似文献   

5.
乙基氰乙基纤维素/甲基丙烯酸酯在一定的浓度下可以形成溶致性液晶,从液晶相的双折射纹理结沟和小角光散射的Hν散射花样可知这类液晶是胆甾型的。同时,在液晶相开始出现时及各向同性相完全消失时的临界浓度C_1和C_2均随着甲基丙烯酸酯的酯基链增长而降低。  相似文献   

6.
乙基氰乙基纤维素/交联聚丙烯酸复合物膜的溶胀行为   总被引:4,自引:1,他引:3  
研究了乙基氰乙基纤维素 [(E CE)C] 交联聚丙烯酸 [PAA]胆甾相液晶复合物膜的厚度以及膜的组成对膜在水中的溶胀行为的影响 .复合物膜越厚则达到溶胀平衡所需要的时间越长 ,但是其最大溶胀率是相同的 .复合物膜的最大溶胀率先是随着 (E CE)C浓度的增加而增加 ,当 (E CE)C的浓度大于 5 1wt%的时候 ,复合物膜的最大溶胀率几乎不再发生变化 .复合物膜的交联密度越大 ,其最大溶胀率越小 ,溶胀速率也随着膜的交联 (点 )密度的增加而减小 .研究还发现复合物膜的交联 (点 )密度越大 ,其溶胀前后最大选择性反射光波长的位移也越小 .  相似文献   

7.
对乙基氰乙基纤维素/丙烯酸胆甾型液晶溶液的液晶性,液晶态的织构特征,丙烯酸在液晶溶液中的聚合反应及在反应过程中胆甾型液晶相结构和性能的变化等方面进行了研究,  相似文献   

8.
乙基醋酸纤维素溶于三氟乙酸、二氯乙酸、醋酸中.在浓度大于临界浓度时,形成胆甾型液晶态.溶液随浓度的增加,从各向同性态经两相共存转变成液晶态.在加热液晶溶液时,溶液转变成各向同性态.降低温度,液晶相再生成.在形成液晶过程中,存在过冷现象.在一定的条件下,液晶相以球状的形式存在.溶液的双折射△n在两相共存与完全液晶态间相互转变时会发生较大变化.乙基醋酸纤维素大分子链的刚性随有机酸溶剂体系的酸强度的增大而增大,使临界浓度C_1~*随溶剂酸强度的增大而减小.  相似文献   

9.
廖博  李筱芳 《化学学报》2010,68(11):1119-1122
利用紫外-可见分光光度计, X射线衍射仪与偏光显微镜研究了乙基纤维素(EC)与羟丙基纤维素(HPC)共混型胆甾液晶. 研究发现: 质量百分浓度相同时, 共混纤维素胆甾型液晶的最大反射波长与螺距随着共混物中HPC含量的增加而增大. XRD实验结果表明共混型纤维素液晶螺距增大与液晶体系中分子层间的距离增大相关. 可以利用该现象来调控纤维素胆甾型液晶的光学性能与螺距.  相似文献   

10.
以乙基纤维素/丙烯酸体系为例,对乙基纤维素液晶的胆甾相性质及其影响因素进行了研究,测定了体系胆甾相结构的螺距。结果表明,乙基纤维素/丙烯酸液晶体的螺旋方向为左旋,随溶液液浓度的增大,胆甾相结构的螺距减小。胆甾相结合的螺距还明显地受到温度,压力、溶剂组成,高分子掺杂等因素的影响。  相似文献   

11.
Ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid (AA) becomes a cholesteric liquid crystalline solution withvivid colors when the (E-CE)C concentration is 42 wt%~52 wt%. (E-CE)C/polyacrylic acid (PAA) composites withcholesteric structure were prepared by polymerzing AA in (E-CE)C/AA liquid crystalline solutions. The layers of orderedpolymer chains in the cholesteric phase were inclined during polymerization and the degree of the inclination depended onthe polymerization temperature and the concentration of the solution before polymerization. The cholesteric structure in thecomposites could not be changed when temperature was lower than 100℃. Cross-linking of the PAA in compositesimproved their water-resistance. The cholesteric order of the composites without cross-linking was destroyed when theywhere immersed in water. The color derived from the selective reflection of the cholesteric phase of the cross-linkedcomposites turned from blue to red after the composites absorbed water. The color of the composites could be returned to theoriginal one when the absorbed water was removed from the swollen composites.  相似文献   

12.
尼龙1010对乙基氰乙基纤维素液晶态的影响   总被引:2,自引:0,他引:2  
在尼龙1010/乙基氰乙基纤维素/二氯乙酸体系中,尼龙1010/二氯乙酸溶液相与乙基氰乙基纤维素/二氯乙酸溶液相不相容,各自形成相区。在乙基氰乙基纤维索含量一定时,增加尼龙1010的量,使液晶相转变温度提高,液晶相的织构也由于乙基氰乙基纤维素/二氯乙酸溶液相的浓度的增大而发生变化。在受到切应力作用后,液晶溶液形成条带织构,条带的方向与应力方向垂直。随着取向的大分子链的松驰解取向,各条带中沿着大分子链取向的方向上出现许多暗带线.把条带分剖成约0.5-1.0μm长的小块。在足够长的时间后,在切应力的方向上形成许多较宽的带。这些带由许多基本相互平行并与宽带形成一角度的小细带组成。上述现象除了与取向大分子链的松弛有关外,可能还与尼龙1010/二氯乙酸溶液相和乙基氰乙基纤维素/二氯乙酸溶液相的相分离有关。  相似文献   

13.
Composite particles comprising poly(2‐phenylethyl methacrylate) (PPhEMA) and imidazolium‐based poly(ionic liquid)s were prepared by suspension polymerization of 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethanesulfonyl)amide as an ionic liquid monomer with dissolved PPhEMA. Not only PPhEMA exhibits lower critical solution temperature (LCST) behavior in 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethanesulfonyl)amide but also the polymer blend in the bulk state exhibited LCST behavior. However, the composite polymer particles obtained after polymerization at 70°C maintained a homogeneous inner structure after heat treatment as the polymerization temperature was greater than the LCST in this system due to the formation of a cross‐linked structure during polymerization. When the composite particles were prepared by suspension polymerization at 30°C, their inner morphology changed from homogeneous to phase separated during the subsequent heat treatment. Moreover, the morphology transformation of the composite particles was dependent on the PPhEMA molecular weight. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
一种新型的亲水性聚丙烯酸-陶瓷复合膜   总被引:1,自引:0,他引:1  
张桃周  平郑骅 《化学学报》2007,65(18):2046-2050
通过化学气相沉积和丙烯酸(AA)在大孔陶瓷膜表面的接枝共聚制备了一种新型的亲水性PAA-陶瓷复合膜. 用FT-IR、SEM、EDS、表面接触角等方法对复合膜接枝层的化学组成、表面形态、元素分布和亲水性进行了表征. 通过系统研究气相沉积和接枝反应的主要条件对膜的渗透汽化性能的影响, 发现当TEOS用量为5 mL, 汽化温度为175 ℃时进行气相沉积, 然后在丙烯酸浓度为7.5%的溶液中进行接枝聚合, 制得的复合膜对醇水混合物显示了优良的分离性能.  相似文献   

15.
Abstract

A novel hydrolysis-resistant superabsorbent composite was prepared via the solution polymerization based on acrylic acid (AA) and sodium bentonite (SBT) as monomers, tetraallylammonium bromine (TAAB) as crosslinker and ammonium persulfate (APS) as initiator. The mechanism of polymerization and the structure of the superabsorbent polymer (SAP) were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-ray), and scanning electron microscopy (SEM). The reaction conditions such as different mass ratios of APS to AA, TAAB to AA, SBT to AA, neutralization degree of AA were optimized by orthogonal experiment, and the influence of each reaction condition on the capacity of water absorption at 150?°C was investigated via single-factor controlled experiment. The hydrolysis resistance and swelling kinetics of the SAP were studied in different solutions at 150?°C. Compared to traditional SAPs, the SAP synthesized with TAAB as crosslinker performed a more excellent hydrolysis resistance and water absorbency capacity at high temperatures. The water absorbency in distilled water or 0.1?mol L?1 NaCl solution could reach 392.6 and 145.2?g g?1at 150?°C, respectively. The SAP maintaining high swelling capacity in the pH range of 5–9 indicated its wide application values in the acidic or alkaline environment at high temperature. In addition, the SAP exhibited good reusability which could still retain about 73% of its initial water absorbency after reswelling six times at 150?°C.  相似文献   

16.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

17.
Acrylic acid (AA)-based superabsorbent interpenetrated with sodium poly(vinyl alcohol) (PVA) sulfate (SPS) was prepared by inverse-emulsion polymerization. The disperse phase was prepared by dissolving AA and crosslinking monomer in aqueous SPS solution. Toluene was used as the continuous phase in which oil-soluble initiator and emulsifiers were dissolved. Sorbitan monooleate and ethyl cellulose were used as emulsifiers. The maximum water and saline absorbencies were 5041 and 211.4 g/g, respectively.  相似文献   

18.
Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film was chosen, and polymerized EDOT monomers in hydrophilic group of LB to prepare arachidic acid (AA)/PEDOT multilayer LB film. UV‐Vis, FT‐IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that film had a well‐arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on layered structure. We used four‐point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the processing time of changes in effective conduction network. That was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin‐coating PEDOT/PSS film or that of ODA‐SA/PEDOT‐PSS film, which was due to the higher π structure of PEDOT structure and ordered film structure.  相似文献   

19.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号