首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effect of layer‐by‐layer AuCl3 doping on the electrical and optical properties of stacked graphene films. Graphene grown by the chemical‐vapor deposition method on a Cu‐foil was chemically doped by AuCl3 solution with a concentration of 20 mM. Eight different configurations were prepared and analyzed by using four‐point probe measurements, optical transmittance measurements, scanning electron microscopy, and micro‐Raman spectroscopy to compare the optical and electrical characteristics of the different graphene samples. In our study, the top‐layer doping method was very effective because better performances considering both sheet resistance and optical transmittance were observed from the configurations with the top‐layer doped. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe2 by doping it with copper in different proportions i.e. CuxWSe2 (x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.  相似文献   

3.
石墨烯独特的结构和性能使其在纳米电子、半导体器件等领域成为研究的热点,但其零带隙的特性严重限制了其应用.采用化学气化沉积法制备了多层石墨烯,并使用溴蒸汽对制备的多层石墨烯进行掺杂,分析研究了溴蒸汽化学掺杂对石墨烯带隙的影响.为了对比溴蒸汽掺杂对石墨烯带隙的影响,使用633 nm He-Ne光分别测量了石墨烯掺杂前和掺杂后的拉曼光谱,根据拉曼光谱计算了石墨烯费米能级移动与掺杂溴蒸汽之间的关系.实验结果表明:溴蒸汽掺杂对石墨烯拉曼光谱G带产生影响;随着掺杂溴蒸汽体积的增加,拉曼光谱G带向高频移动并逐渐趋于稳定;G带和2D带强度比也迅速增加,并最终趋于稳定.费米能级的移动与G峰位置成线性关系,利用G峰峰值位置与费米能级实验关系式计算了溴掺杂后石墨烯的费米能级,分析了化学掺杂对石墨烯带隙的影响.  相似文献   

4.
《Current Applied Physics》2018,18(7):843-846
We grow atomically thin molybdenum ditelluride (MoTe2) films on a SiO2/Si substrate by means of metal–organic chemical vapor deposition (MOCVD). Our Raman spectroscopy measurements reveal the formation of 2H-phase MoTe2 films. Further, transmission electron microscopy and X-ray photoelectron spectroscopy studies indicate a three-atomic-layer structure and the surface element composition of MoTe2 films. In this study, we mainly focus on the influence of metal contacts attached to the films on their electrical performance. We fabricate 2H-phase-MoTe2-based field-effect transistors (FETs) with various metal contacts such as titanium/gold, nickel and palladium, which present p-type semiconductor properties. We also examine the influence of the work functions of the contact metals on the electrical properties of three-atomic-layer-MoTe2-based FET devices. For a p-type MoTe2 semiconductor, higher work functions of the contact metals afford narrower Schottky barrier heights (SBHs) and eventually highly efficient carrier injection through the contacts.  相似文献   

5.
Doping graphene with metal contacts   总被引:1,自引:0,他引:1  
Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au, and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by approximately 0.5 eV. At equilibrium separations, the crossover from p-type to n-type doping occurs for a metal work function of approximately 5.4 eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described very well by a simple analytical model which characterizes the metal solely in terms of its work function, greatly extending their applicability.  相似文献   

6.
通过真空热蒸镀和高温退火法制备的金属纳米复结构SERS基底因其具有良好的灵敏度,稳定性和均匀性而广泛应用于各种检测领域。石墨烯具有优良的光学特性,化学惰性以及荧光猝灭效应,自被发现以后一直是光学微纳器件中的一大热门材料。石墨烯还可以有效分离探针分子与基底,优化拉曼光谱质量,因此广泛应用于SERS研究领域。同时石墨烯可以有效隔绝金属纳米结构与空气的直接接触防止金属纳米结构被氧化而失效,也可以催化氧化银的脱氧反应提升SERS基底的稳定性。在石墨烯/金属纳米复合结构SERS基底在制备过程中,受到金属膜的种类、厚度参数、气体种类、退火时间、温度和气压等因素的影响,制备的金属纳米结构形貌存在很大差异。石墨烯的拉曼光谱会因为应力和掺杂导致其拉曼特征峰出现不同程度的增强,移动以及展宽。(1)采用真空热蒸镀法和高温退火法制备石墨烯/银纳米复合结构SERS基底,建立了金属纳米颗粒成型机理的模型,从孔洞形成、孔洞生长、金属纳米岛形成三个阶段分析了金属纳米粒子的成型过程,实验沉积5,10,15以及20 nm的银薄膜,退火后银纳米结构的覆盖率分别为~35.1%,~24.4%,~30%以及~96.0%,在沉积银薄膜样品上使用湿法转移石墨烯,退火处理后发现石墨烯阻止了银纳米岛的形成过程;(2)理论分析了银薄膜厚度、石墨烯覆盖对复合结构的几何形貌、拉曼增强特性的影响,石墨烯由于其具有较高的杨氏模量和表面张力,可以有效抑制退火过程中银薄膜向纳米粒子转变的过程,从而实现对复合结构表面形貌的调控;(3)实验研究了银纳米粒结构形貌对石墨烯拉曼光谱的影响,并理论分析了蒸镀不同银薄膜厚度的样品对石墨烯的拉曼光谱增强,移动以及展宽影响的具体原因。  相似文献   

7.
通过化学气相沉积法制备,并转移到基片得到1~3层石墨烯样品。利用霍尔效应及微区拉曼光谱测量,结合光学显微镜观察,分析了不同层数石墨烯在1064nm纳秒激光辐照下的损伤特性。实验发现1~3层石墨烯的激光损伤阈值依次降低,分别为:单层0.45J/cm2,2层0.34J/cm2,3层0.23J/cm2。激光强度超过阈值时,石墨烯薄膜电阻增大,载流子迁移率降低。通过光学显微镜观察发现局部区域破损,破损区域的拉曼光谱中1580cm-1左右的G峰和2700cm-1左右的2D峰高度比发生变化。实验结果表明1064nm纳秒激光辐照石墨烯主要为剥离作用。  相似文献   

8.
对用MOMBE法生长的重C掺杂p型GaAs进行了Raman散射研究,结合理论分析,较好地解释了p型GaAs中纵光学(LO)声子与空穴等离振子耦合(LOPC)模的Raman散射特性,证明它具有与n型状态不同的特点,根据实验结果讨论了重掺杂对Raman散射谱的影响,发现LOPC模的散射峰特征(位置和宽度)与重掺杂效应程度具有很大关系。  相似文献   

9.
Epitaxial growth on transition metal surfaces is an effective way to prepare large-area and high-quality graphene.However,the strong interaction between graphene and metal substrates suppresses the intrinsic excellent properties of graphene and the conductive metal substrates also hinder its applications in electronics.Here we demonstrate the decoupling of graphene from metal substrates by germanium oxide intercalation.Germanium is firstly intercalated into the interface between graphene and Ir(111) substrate.Then oxygen is subsequently intercalated,leading to the formation of a GeO_x layer,which is confirmed by x-ray photoelectron spectroscopy.Low-energy electron diffraction and scanning tunneling microscopy studies show intact carbon lattice of graphene after the GeO_x intercalation.Raman characterizations reveal that the intercalated layer effectively decouples graphene from the Ir substrate.The transport measurements demonstrate that the GeO_x layer can act as a tunneling barrier in the fabricated large-area high-quality vertical graphene/GeO_x/Ir heterostructure.  相似文献   

10.
《Physics letters. A》2014,378(18-19):1321-1325
The transport properties of graphene/metal (Cu(111), Al(111), Ag(111), and Au(111)) planar junction are investigated using the first-principles nonequilibrium Green's function method. The planar junction induce second transmission minimum (TM2) below the Fermi level due to the existence of the Dirac point of clamped graphene. Interestingly, no matter the graphene is p- or n-type doped by the metal substrate, the TM2 always locates below the Fermi level. We find that the position of the TM2 is not only determined by the doping effect of metal lead on the graphene, but also influenced by the electrostatic potential of the metal substrate and the work function difference between the clamped and suspended graphene.  相似文献   

11.
BN链掺杂的石墨烯纳米带的电学及磁学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王鼎  张振华  邓小清  范志强 《物理学报》2013,62(20):207101-207101
基于密度泛函理论第一性原理系统研究了BN链掺杂石墨烯纳米带(GNRs)的电学及磁学特性, 对锯齿型石墨烯纳米带(ZGNRs)分非磁态(NM)、反铁磁态(AFM)及铁磁性(FM)三种情况分别进行考虑. 重点研究了单个BN链掺杂的位置效应. 计算发现: BN链掺杂扶手椅型石墨烯纳米带(AGNRs) 能使带隙增加, 不同位置的掺杂, 能使其成为带隙丰富的半导体. BN链掺杂非磁态ZGNR的不同位置, 其金属性均降低, 并能出现准金属的情况; BN链掺杂反铁磁态ZGNR, 能使其从半导体变为金属或半金属(half-metal), 这取决于掺杂的位置; BN链掺杂铁磁态ZGNR, 其金属性保持不变, 与掺杂位置无关. 这些结果表明: BN链掺杂能有效调控石墨烯纳米带的电子结构, 并形成丰富的电学及磁学特性, 这对于发展各种类型的石墨烯基纳米电子器件有重要意义. 关键词: 石墨烯纳米带 BN链掺杂 输运性质 自旋极化  相似文献   

12.
Interface engineering in atomically thin transition metal dichalcogenides (TMDs) is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications and quantum devices. Interface engineering in a monolayer WSe2 sample via introduction of high-density edges of standing structured graphene nanosheets (GNs) is realized. A strong photoluminescence (PL) emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature, which indicated the heavily p-type doping of the monolayer WSe2/thin graphene nanosheet-embedded carbon (TGNEC) film heterostructure. We also successfully triggered the emission of biexcitons (excited state biexciton) in a monolayer WSe2, via the electron trapping centers of edge quantum wells of a TGNEC film. The PL emission of a monolayer WSe2/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate. This study can be an important benchmark for the extensive understanding of light–matter interaction in TMDs, and their dynamics.  相似文献   

13.
Abstract

The recent progress using Raman spectroscopy and imaging of graphene is reviewed. The intensity of the G band increases with increased graphene layers, and the shape of 2D band evolves into four peaks of bilayer graphene from a single peak of monolayer graphene. The G band will blue shift and become narrow with both electron and hole doping, whereas the 2D band will blue shift with hole doping and red shift with electron doping. Frequencies of the G and 2D band will downshift with increasing temperature. Under compressed strain, the upshift of the G and 2D bands can be found. Moreover, the strong Raman signal of monolayer graphene is explained by interference enhancement effect. As for epitaxial graphene, Raman spectroscopy can be used to identify the superior and inferior carrier mobility. The edge chirality of graphene can be determined by using polarized Raman spectroscopy. All results mentioned here are closely relevant to the basic theory of graphene and application in nanodevices.  相似文献   

14.
The role of sulphuric acid (H2SO4) in fabrication graphene oxide besides as intercalant has not been well addressed. In this work, Raman spectroscopy is used to monitor structural evolution in chemical vapor deposition (CVD) graphene chemically oxidized by dilute H2SO4. From the analysis of Raman spectra of oxidized graphene, we propose that oxidation first initiates at preexisting defects, and vacancy‐like defects are formed. Following is the radial growth of the vacancy, and oxidation pits appear in graphene. This assumption is further confirmed by atomic force microscope measurement. It is also found that with increase of amounts of defects, G peak is blue shift, and this is explained by defect and hole doping effect. Hole doping in graphene is much stronger at hexagon regions near the oxidation pits. This work helps in understanding the role of H2SO4 in fabrication graphene oxide as oxidizer as well as helps in obtaining structure information of graphene oxide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The ultra‐clean and defect‐free transfer of chemical vapor deposition (CVD) graphene is essential for its application in electronic devices. Here, we study the influence of commonly used etching solvents during the transfer process, i.e. ammonium persulfate, ferric chloride, and ferric nitrate, on the properties of CVD graphene by Raman spectroscopy. Obvious blue shift and broadening of Raman G and 2D peaks were observed for graphene transferred by ferric chloride and ferric nitrate, as compared to that transferred by ammonium persulfate. These changes are attributed to p‐doping as well as reduction of phonon lifetime of graphene in the presence of residue iron compounds during the transfer process. The latter would also introduce a great reduction of thermal conductivity of graphene, e.g. with 76% reduction for graphene transferred by ferric nitrate as compared to that transferred by ammonium persulfate. This work would provide valuable information for the transfer of high‐quality CVD graphene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Sr-doped Ba0.7La0.3TiO3(BSLTO)thin films are deposited by pulsed laser deposition,and their microstructure,conductivity,carrier transport mechanism,and ferroelectricity are systematically investigated.The x-ray diffraction measurements demonstrate that Sr-doping reduces the lattice constant of BSLTO thin films,resulting in the enhanced phonon energy in the films as evidenced by the Raman measurements.Resistivity-temperature and Hall effect measurements demonstrate that Sr can gradually reduce electrical resistivity while the electron concentration remains almost unchanged at high temperatures.For the films with semiconducting behavior,the charge transport model transforms from variable range hopping to small polaron hopping as the measurement temperature increases.The metalic conductive behaviors in the films with Sr=0.30,0.40 conform to thermal phonon scattering mode.The difference in charge transport behavior dependent on the A-site cation doping,is clarified.It is revealed that the increasing of phonon energy by Sr doping is responsible for lower activation energy of small polaron hopping,higher carrier mobility,and lower electrical resistivity.Interestingly,the piezoelectric force microscopy(PFM)results demonstrate that all the BSLTO films can exhibit ferroelectricity,especially for the room temperature metallic conduction film with Sr=0.40.These results imply that Sr-doping could be a potential way to explore ferroelectric metal materials for other perovskite oxides.  相似文献   

17.
We report on the structural, magnetic, and magnetotransport characteristics of Cr-doped indium tin oxide (ITO) films grown on SiO2/Si substrates by pulsed laser deposition. Structural analysis clearly indicates that homogeneous films of bixbyite structure are grown without any detectable formation of secondary phases up to 20 mol% Cr doping. The carrier concentration is found to decrease with Cr ion addition, displaying a change in the conduction type from n-type to p-type around 15 mol% Cr doping. Room temperature ferromagnetism is observed, with saturation magnetization of ∼0.7 emu/cm3, remnant magnetization of ∼0.2 emu/cm3 and coercive field of ∼30 Oe for 5 mol% Cr-doped ITO. Magnetotransport measurements reveal the unique feature of diluted magnetic semiconductors, in particular, an anomalous Hall effect governed by electron doping, which indicates the intrinsic nature of ferromagnetism in Cr-doped ITO. These results suggest that Cr-doped ITO could be promising for semiconductor spin electronics devices.  相似文献   

18.
采用第一性原理方法对Ti掺杂CrSi2的几何结构、电子结构、复介电函数、吸收系数、反射谱、折射率和光电导率进行了计算,对Ti置换Cr原子后的光电特性变化进行了分析.结果表明:Ti置换Cr原子后,晶格常数a,b和c均增大,体积变大;Ti的掺入引入了新的杂质能级,导致费米能级插入价带中,Cr11TiSi24变为p型半导体,带隙宽度由未掺杂时的0.38eV变为0.082eV,价带顶和导带底的态密度主要由Cr-d和Ti-d层电子贡献;与未掺杂CrSi2相比,Cr11TiSi24的介电峰发生了红移,仅在1.33eV处有一个峰,而原位于4.53eV处的峰消失;吸收系数,反射率和光电导率明显降低.  相似文献   

19.
There is an increasing amount of literature concerning electronic properties of graphene close to the neutrality point. Many experiments continue using the two-probe geometry or invasive contacts or do not control samples’ macroscopic homogeneity. We believe that it is helpful to point out some problems related to such measurements. By using experimental examples, we illustrate that the charge inhomogeneity induced by spurious chemical doping or metal contacts can lead to large systematic errors in assessing graphene’s transport properties and, in particular, its minimal conductivity. The problems are most severe in the case of two-probe measurements where the contact resistance is found to strongly vary as a function of gate voltage.  相似文献   

20.
The effect of vacuum annealing on the properties of graphene is investigated by using Raman spectroscopy and electrical measurement. Heavy hole doping on graphene with concentration as high as 1.5 × 1013 cm−2 is observed after vacuum annealing and exposed to an air ambient. This doping is due to the H2O and O2 adsorption on graphene, and graphene is believed to be more active to molecular adsorption after annealing. Such observation calls for special attention in the process of fabricating graphene‐based electronic devices and gas sensors. On the other hand, because the quality of graphene remains high after the doping process, this would be an efficient and controllable method to introduce heavy doping in graphene, which would greatly help on its application in future electronic devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号