首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

2.
The reaction of [Cp*TaCl(4)], 1 (Cp* = η(5)-C(5)Me(5)), with [LiBH(4)·THF] at -78 °C, followed by thermolysis in the presence of excess [BH(3)·THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH}], 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.  相似文献   

3.
A metallaborane of novel structure, [(Cp*Mo)(2)B(3)H(3)Se(2){Fe(CO)(2)}(2){Fe(CO)(3)}(2)] (2; Cp* = η(5)-C(5)Me(5)), with tetracapped pentagonal bipyramidal geometry, isolated from the reaction of [(Cp*Mo)(2)B(4)H(4)Se(2)], 1 with [Fe(2)(CO)(9)]; the title compound exhibit an 11-vertex closo-cage geometry, having eight skeletal electron pairs (sep) and 98 valence electrons, appropriate for its geometric structure.  相似文献   

4.
The reaction of [(Cp*Ta)(2)B(4)H(9)(μ-BH(4))] (1; Cp* = η(5)-C(5)Me(5)) with [Fe(2)(CO)(9)] in hexane yielded [(Cp*Ta)(2)B(5)H(7){Fe(CO)(3)}(2)] (2) and [(Cp*Ta)(2)B(5)H(9){Fe(CO)(3)}(4)] (3) in moderate yield. Cluster 2 represents the first example of a bicapped pentagonal-bipyramidal metallaborane with a deformed equatorial plane, and 3 can be described as a fused cluster in which two pentagonal-bipyramidal units are fused through a common 3-vertex triangular face. Compounds 2 and 3 have been characterized by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis.  相似文献   

5.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

6.
The reactions of heteroleptic GaCp*/CO containing transition metal complexes of iron and cobalt, namely [(CO)(3)M(μ(2)-GaCp*)(m)M(CO)(3)] (Cp* = pentamethylcyclopentadienyl; M = Fe, m = 3; M = Co, m = 2) and [Fe(CO)(4)(GaCp*)], with ZnMe(2) in toluene and the presence of a coordinating co-solvent were investigated. The reaction of the iron complex [Fe(CO)(4)(GaCp*)] with ZnMe(2) in presence of tetrahydrofurane (thf) leads to the dimeric compound [(CO)(4)Fe{μ(2)-Zn(thf)(2)}(2)Fe(CO)(4)] (1). Reaction of [(CO)(3)Fe(μ(2)-GaCp*(3))Fe(CO)(3)] with ZnMe(2) and stoichiometric amounts of thf leads to the formation of [(CO)(3)Fe{μ(2)-Zn(thf)(2)}(2)(μ(2)-ZnMe)(2)Fe(CO)(3)] (2) containing {Zn(thf)(2)} as well as ZnMe ligands. Using pyridine (py) instead of thf leads to [(CO)(3)Fe{μ(2)-Zn(py)(2)}(3)Fe(CO)(3)] (3) via replacement of all GaCp* ligands by three{Zn(py)(2)} groups. In contrast, reaction of [(CO)(3)Co(μ(2)-GaCp*)(2)Co(CO)(3)] with ZnMe(2) in the presence of py or thf leads in both cases to the formation of [(CO)(3)Co{μ(2)-ZnL(2)}(μ(2)-ZnCp*)(2)Co(CO)(3)] (L = py (4), thf (5)) via replacement of GaCp* with {Zn(L)(2)} units as well as Cp* transfer from the gallium to the zinc centre. All compounds were characterised by NMR spectroscopy, IR spectroscopy, single crystal X-ray diffraction and elemental analysis.  相似文献   

7.
Hydrolysis of [NbCp'Cl(4)] (Cp' = η(5)-C(5)H(4)SiMe(3)) with the water adduct H(2)O·B(C(6)F(5))(3) afforded the oxo-borane compound [NbCp'Cl(2){O·B(C(6)F(5))(3)}] (2a). This compound reacted with [MgBz(2)(THF)(2)] giving [NbCp'Bz(2){O·B(C(6)F(5))(3)}] (2b), whereas [NbCp'Me(2){O·B(C(6)F(5))(3)}] (2c) was obtained from the reaction of [NbCp'Me(4)] with H(2)O·B(C(6)F(5))(3). Addition of Al(C(6)F(5))(3) to solutions containing the oxo-borane compounds [MCp(R)X(2){O·B(C(6)F(5))(3)}] (M = Ta, Cp(R) = η(5)-C(5)Me(5) (Cp*), X = Cl 1a, Bz 1b, Me 1c; M = Nb, Cp(R) = Cp', X = Cl 2a) afforded the oxo-alane complexes [MCp(R)X(2){O·Al(C(6)F(5))(3)}] (M = Ta, Cp(R) = Cp*, X = Cl 3a, Bz 3b, Me 3c; M = Nb, Cp(R) = Cp', X = Cl 4a), releasing B(C(6)F(5))(3). Compound 3a was also obtained by addition of Al(C(6)F(5))(3) to the dinuclear μ-oxo compound [TaCp*Cl(2)(μ-O)](2), meanwhile addition of the water adduct H(2)O·Al(C(6)F(5))(3) to [TaCp*Me(4)] gave complex 3c. The structure of 2a and 3a was obtained by X-ray diffraction studies. Density functional theory (DFT) calculations were carried out to further understand these types of oxo compounds.  相似文献   

8.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

9.
The novel cationic diiron μ-allenyl complexes [Fe(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 4a; R = Ph, 4b) have been obtained in good yields by a two-step reaction starting from [Fe(2)Cp(2)(CO)(4)]. The solid state structures of [4a][CF(3)SO(3)] and of the diruthenium analogues [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}][BPh(4)] (R = Me, [2a][BPh(4)]; R = Ph, [2c][BPh(4)]) have been ascertained by X-ray diffraction studies. The reactions of 2c and 4a with Br?nsted bases result in formation of the μ-allenylidene compound [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(1)-C(α)=C(β)=C(γ)(Ph)(2)}] (5) and of the dimetallacyclopentenone [Fe(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)=C(β)(C(γ)(Me)CH(2))C(=O)}] (6), respectively. The nitrile adducts [Ru(2)Cp(2)(CO)(NCMe)(μ-CO){μ-η(1):η(2)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 7a; R = Ph, 7b), prepared by treatment of 2a,c with MeCN/Me(3)NO, react with N(2)CHCO(2)Et/NEt(3) at room temperature, affording the butenolide-substituted carbene complexes [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(R)(2)OC(=O)C[upper bond 1 end](H)] (R = Me, 10a; R = Ph, 10b). The intermediate cationic compound [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (9) has been detected in the course of the reaction leading to 10a. The addition of N(2)CHCO(2)Et/NHEt(2) to 7a gives the 2-furaniminium-carbene [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (11). The X-ray structures of 10a, 10b and [11][BF(4)] have been determined. The reactions of 4a,b with MeCN/Me(3)NO result in prevalent decomposition to mononuclear iron species.  相似文献   

10.
Reaction of [1,2‐(Cp*RuH)2B3H7] ( 1 ; Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] yielded arachno‐[(Cp*RuCO)2B2H6] ( 2 ), which exhibits a butterfly structure, reminiscent of 7 sep B4H10. Compound 2 was found to be a very good precursor for the generation of bridged borylene species. Mild pyrolysis of 2 with [Fe2(CO)9] yielded a triply bridged heterotrinuclear borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 3 ) and bis‐borylene complexes [{(μ3‐BH)(Cp*Ru)(μ‐CO)}2Fe2(CO)5] ( 4 ) and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 5 ). In a similar fashion, pyrolysis of 2 with [Mn2(CO)10] permits the isolation of μ3‐borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ). Both compounds 3 and 6 have a trigonal‐pyramidal geometry with the μ3‐BH ligand occupying the apical vertex, whereas 4 and 5 can be viewed as bicapped tetrahedra, with two μ3‐borylene ligands occupying the capping position. The synthesis of tantalum borylene complex [(μ3‐BH)(Cp*TaCO)2(μ‐CO){Fe(CO)3}] ( 7 ) was achieved by the reaction of [(Cp*Ta)2B4H8(μ‐BH4)] at ambient temperature with [Fe2(CO)9]. Compounds 2 – 7 have been isolated in modest yield as yellow to red crystalline solids. All the new compounds have been characterized in solution by mass spectrometry; IR spectroscopy; and 1H, 11B, and 13C NMR spectroscopy and the structural types were unequivocally established by crystallographic analysis of 2 – 6 .  相似文献   

11.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

12.
The reactions of the phosphinidene-bridged complex [Mo(2)Cp(2)(μ-PH)(η(6)-HMes*)(CO)(2)] (1), the arylphosphinidene complexes [Mo(2)Cp(2)(μ-κ(1):κ(1),η(6)-PMes*)(CO)(2)] (2), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(3)] (3), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(2)(CN(t)Bu)] (4), and the cyclopentadienylidene-phosphinidene complex [Mo(2)Cp(μ-κ(1):κ(1),η(5)-PC(5)H(4))(η(6)-HMes*)(CO)(2)] (5) toward different sources of chalcogen atoms were investigated (Mes* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5)). The bare elements were appropriate sources in all cases except for oxygen, in which case dimethyldioxirane gave the best results. Complex 1 reacted with the mentioned chalcogen sources at low temperature, to give the corresponding chalcogenophosphinidene derivatives [Mo(2)Cp(2){μ-κ(2)(P,Z):κ(1)(P)-ZPH}(η(6)-HMes*)(CO)(2)] (Z = O, S, Se, Te; P-Se = 2.199(2) ?). The arylphosphinidene complex 2 was the least reactive substrate and gave only chalcogenophosphinidene derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(6)-ZPMes*)(CO)(2)] for Z = O and S (P-O = 1.565(2) ?), along with small amounts of the dithiophosphorane complex [Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(S'),η(6)-S(2)PMes*)(CO)(2)], in the reaction with sulfur. The η(4)-complexes 3 and 4 reacted with sulfur and gray selenium to give the corresponding derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(4)-ZPMes*)(CO)(2)L] (L = CO, CN(t)Bu), obtained respectively as syn (Z = Se; P-Se = 2.190(1) ? for L = CO) or a mixture of syn and anti isomers (Z = S; P-S = 2.034(1)-2.043(1) ?), with these diastereoisomers differing in the relative positioning of the chalcogen atom and the terminal ligand at the metallocene fragment, relative to the Mo(2)P plane. The cyclopentadienylidene compound 5 reacted with all chalcogens, and gave with good yields the chalcogenophosphinidene derivatives [Mo(2)Cp(μ-κ(2)(P,Z):κ(1)(P),η(5)-ZPC(5)H(4))(η(6)-HMes*)(CO)(2)] (Z = S, Se, Te), these displaying in solution equilibrium mixtures of the corresponding cis and trans isomers differing in the relative positioning of the cyclopentadienylic rings with respect to the MoPZ plane in each case. The sulfur derivative reacted with excess sulfur to give the dithiophosphorane complex [Mo(2)Cp(μ-κ(2)(P,S):κ(1)(S'),η(5)-S(2)PC(5)H(4))(η(6)-HMes*)(CO)(2)] (P-S = 2.023(4) and 2.027(4) ?). The structural and spectroscopic data for all chalcogenophosphinidene complexes suggested the presence of a significant π(P-Z) bonding interaction within the corresponding MoPZ rings, also supported by Density Functional Theory calculations on the thiophosphinidene complex syn-[Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(P),η(4)-SPMes*)(CO)(3)].  相似文献   

13.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

14.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

15.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

16.
Thakur A  Sahoo S  Ghosh S 《Inorganic chemistry》2011,50(17):7940-7942
The reaction of [Cp*MoCl(4)] with an excess of LiBH(4), followed by thermolysis with tellurium powder in toluene, afforded a tricapped cubane cluster, [(Cp*Mo)(4)B(4)H(4)(μ(4)-BH)(3)] (1), which represents an unprecedented metal-rich metallaborane cluster with a cubane core containing 58 cluster valence electrons (cve) and three metal-metal bonds.  相似文献   

17.
The title compound reacted rapidly with CN(t)Bu at room temperature by displacing the BF(4)(-) ligand and incorporating three molecules of isocyanide to yield the electron-precise complex [Mo(2)Cp(2)(μ-PPh(2))(2)(CN(t)Bu)(3)(CO)](BF(4))(2), which was obtained as a mixture of cis and trans isomers. Reaction with several HER(n) molecules (HER(n) = HSPh, HSePh, H(2)PCy) took place with formal elimination of HBF(4) and spontaneous carbonylation to give the electron-precise cations [Mo(2)Cp(2)(μ-ER(n))(μ-PPh(2))(2)(CO)(2)](+). Reactions with several bidentate ligands (L(2)H) having acidic E-H bonds (2-hydroxypyridine, 2-mercaptopyridine, cathecol, 2-aminophenol, and 2-aminothiophenol) proceeded analogously with deprotonation of these bonds with the preference E = S > O > N. The N,O-donor ligands yielded 32-electron chelate derivatives of the type [Mo(2)Cp(2)(O,N-L(2))(μ-PPh(2))(2)(CO)]BF(4) (L(2) = OC(5)H(4)N, OC(6)H(4)NH(2)), whereas the S,N-donors yielded 34-electron, S-bridged complexes [Mo(2)Cp(2)(μ-S:S,N-L(2))(μ-PPh(2))(2)(CO)]BF(4) [L(2) = SC(5)H(4)N (Mo-Mo = 2.8895(8) ?), SC(6)H(4)NH(2)]. However, reaction with catechol gave a monodentate derivative [Mo(2)Cp(2)(O-OC(6)H(4)OH)(μ-PPh(2))(2)(CO)]BF(4). In contrast, reactions of the title complex with several carboxylic acids and related species (acetic, benzoic, and thioacetic acids, acetamide, thioacetamide, and sodium diethyldithiocarbamate) were insensitive to the nature of the donor atoms and gave in all cases 32-electron chelate derivatives of type [Mo(2)Cp(2)(κ(2)-L(2))(μ-PPh(2))(2)(CO)]BF(4). All of the above cations having Mo-bound OH, NH, or NH(2) groups were easily deprotonated upon reaction with 1,8-diazabicycloundec-7-ene (DBU) or other bases to give neutral complexes which exhibited different coordination motifs depending on the donor atoms, including chelate complexes of the type [Mo(2)Cp(2)(κ(2)-L(2)')(μ-PPh(2))(2)(CO)] (L(2)' = OC(6)H(4)O, OC(6)H(4)NH), the bridged complexes [Mo(2)Cp(2)(μ-S,N:S,N-SC(6)H(4)NH)(μ-PPh(2))(2)] and [Mo(2)Cp(2){μ-S,N-N(S)CMe}(μ-PPh(2))(2)], and the terminal acetylimido complex [Mo(2)Cp(2){N-N(O)CMe}(μ-PPh(2))(2)(CO)].  相似文献   

18.
The anion [Mo(2)Cp(2)(μ-PCy(2))(μ-CO)(2)](-) (1; Li(+) salt) reacts at 290 K with P(4) to give the diphosphorus-bridged complex [Mo(2)Cp(2)(μ-PCy(2))(CO)(2)(μ-κ(2):κ(2)-P(2))](-) (2). The latter reacts with MeI and ClSnPh(3) through a single P atom to give respectively diphosphenyl [Mo(2)Cp(2)(μ-PCy(2))(CO)(2)(μ-κ(2):κ(2)-P(2)Me)] (3) and stannyl [Mo(2)Cp(2)(μ-PCy(2))(CO)(2){μ-κ(2):κ(2)-P(2)(SnPh(3))}] (4) derivatives, with the P-P-Sn angle in 4 being unexpectedly acute [80.3(1)°]. According to density functional theory calculations, this novel nucleophilic behavior of 1 is derived from its anionic nature, thus enabling the P(2) ligand to act in a π-donor-like fashion.  相似文献   

19.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

20.
A systematic study on the reactivity of the triple-decker complex [(Cp’’’Co)2(μ,η44-C7H8)] ( A ) (Cp’’’=1,2,4-tritertbutyl-cyclopentadienyl) towards sandwich complexes containing cyclo-P3, cyclo-P4, and cyclo-P5 ligands under mild conditions is presented. The heterobimetallic triple-decker sandwich complexes [(Cp*Fe)(Cp’’’Co)(μ,η54-P5)] ( 1 ) and [(Cp’’’Co)(Cp’’’Ni)(μ,η33-P3)] ( 3 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) were synthesized and fully characterized. In solution, these complexes exhibit a unique fluxional behavior, which was investigated by variable temperature NMR spectroscopy. The dynamic processes can be blocked by coordination to {W(CO)5} fragments, leading to the complexes [(Cp*Fe)(Cp’’’Co)(μ3541-P5){W(CO)5}] ( 2 a ), [(Cp*Fe)(Cp’’’Co)(μ45411-P5){(W(CO)5)2}] ( 2 b ), and [(Cp’’’Co)(Cp’’’Ni)(μ3321-P3){W(CO)5}] ( 4 ), respectively. The thermolysis of 3 leads to the tetrahedrane complex [(Cp’’’Ni)2(μ,η22-P2)] ( 5 ). All compounds were fully characterized using single-crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry, and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号