首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahn B  Lee K  Lee H  Panchapakesan R  Oh KW 《Lab on a chip》2011,11(23):3956-3962
We present a simple method of water-in-oil droplet synchronization in a railroad-like channel network. The network consisted of a top channel, a bottom channel, and ladder-like channels interconnected between the two main channels. The presence of the pressure difference between the top and bottom channels resulted in the crossflow of carrier oil through the ladder network until the pressure in each channel was balanced automatically. The proposed model and method proved the feasibility of the parallel synchronization of two trains of droplets with up to 95% synchronization efficiency. Physical parameters that could improve the efficiency were investigated with the systematic variation of the droplet length and droplet generation frequency by controlling the flow rate in each channel. Under a subtle difference in the generation frequency, an unmatched droplet sandwiched between two matched droplets in the ladder network was switched and synchronized in turn. For perfect one-to-one droplet synchronization, the droplet length and the droplet generation frequency needed to be the same for both the top and bottom channels. In addition, one-to-multiple droplet synchronization was demonstrated by matching the product of the droplet length and the droplet generation frequency for both the top and bottom channels. The proposed method provides a simple unit operation for parallel synchronization of the trains of droplets that can be easily integrated with the conventional continuous-flow droplet-based microfluidic platform.  相似文献   

2.
Passive microfluidic channel geometries for control of droplet fission, fusion and sorting are designed, fabricated, and tested. In droplet fission, the inlet width of the bifurcating junction is used to control the range of breakable droplet sizes and the relative resistances of the daughter channels were used to control the volume of the daughter droplets. Droplet fission is shown to produce concentration differences in the daughter droplets generated from a primary drop with an incompletely mixed chemical gradient, and for droplets in each of the bifurcated channels, droplets were found to be monodispersed with a less than 2% variation in size. Droplet fusion is demonstrated using a flow rectifying design that can fuse multiple droplets of same or different sizes generated at various frequencies. Droplet sorting is achieved using a bifurcating flow design that allows droplets to be separated base on their sizes by controlling the widths of the daughter channels. Using this sorting design, submicron satellite droplets are separated from the larger droplets.  相似文献   

3.
Lee C  Lee J  Kim HH  Teh SY  Lee A  Chung IY  Park JY  Shung KK 《Lab on a chip》2012,12(15):2736-2742
This paper presents experimental results demonstrating the feasibility of high frequency ultrasonic sensing and sorting for screening single oleic acid (lipid or oil) droplets under continuous flow in a microfluidic channel. In these experiments, hydrodynamically focused lipid droplets of two different diameters (50 μm and 100 μm) are centered along the middle of the channel, which is filled with deionized (DI) water. A 30 MHz lithium niobate (LiNbO(3)) transducer, placed outside the channel, first transmits short sensing pulses to non-invasively determine the acoustic scattering properties of the individual droplets passing through the beam's focus. Integrated backscatter (IB) coefficients, utilized as a sorting criterion, are measured by analyzing the received echo signals from each droplet. When the IB values corresponding to 100 μm droplets are obtained, a custom-built LabVIEW panel commands the transducer to emit sinusoidal burst signals to commence the sorting operation. The number of droplets tested for the sorting is 139 for 50 μm droplets and 95 for 100 μm droplets. The sensing efficiencies are estimated to be 98.6% and 99.0%, respectively. The sorting is carried out by applying acoustic radiation forces to 100 μm droplets to direct them towards the upper sheath flow, thus separating them from the centered droplet flow. The sorting efficiencies are 99.3% for 50 μm droplets and 85.3% for 100 μm droplets. The results suggest that this proposed technique has the potential to be further developed into a cost-effective and efficient cell/microparticle sorting instrument.  相似文献   

4.
Hung LH  Choi KM  Tseng WY  Tan YC  Shea KJ  Lee AP 《Lab on a chip》2006,6(2):174-178
A multifunctional and high-efficiency microfluidic device for droplet generation and fusion is presented. Through unique design of the micro-channels, the device is able to alternately generate droplets, generating droplet ratios ranging from 1 ratio 5 to 5 ratio 1, and fuse droplets, enabling precise chemical reactions in several picoliters on a single chip. The controlled fusion is managed by passive control based on the channel geometry and liquid phase flow. The synthesis of CdS nanoparticles utilizing each fused droplet as a microreactor for rapid and efficient mixing of reagents is demonstrated in this paper. Following alternating droplet generation, the channel geometry allows the exclusive fusion of alternate droplets with concomitant rapid mixing and produces supersaturated solution of Cd2+ and S2- ions to form CdS nanoparticles in each fused droplet. The spectroscopic properties of the CdS nanoparticles produced by this method are compared with CdS prepared by bulk mixing.  相似文献   

5.
Li ZG  Ando K  Yu JQ  Liu AQ  Zhang JB  Ohl CD 《Lab on a chip》2011,11(11):1879-1885
A method for on-demand droplet fusion in a microfluidic channel is presented using the flow created from a single explosively expanding cavitation bubble. We test the technique for water-in-oil droplets, which are produced using a T-junction design in a microfluidic chip. The cavitation bubble is created with a pulsed laser beam focused into one droplet. High-speed photography of the dynamics reveals that the droplet fusion can be induced within a few tens of microseconds and is caused by the rapid thinning of the continuous phase film separating the droplets. The cavitation bubble collapses and re-condenses into the droplet. Droplet fusion is demonstrated for static and moving droplets, and for droplets of equal and unequal sizes. Furthermore, we reveal the diffusion dominated mixing flow and the transport of a single encapsulated cell into a fused droplet. This laser-based droplet fusion technique may find applications in micro-droplet based chemical synthesis and bioassays.  相似文献   

6.
Ahn B  Lee K  Lee H  Panchapakesan R  Xu L  Xu J  Oh KW 《Lab on a chip》2011,11(22):3915-3918
We present a simple method of guiding, distributing, and storing of a train of shape-dependent droplets by using side flows, cavity guiding tracks, and storage chambers. The squeezing flow makes a train of flattened droplets to align to one side of the wall and the pushing flow guides it to one of the designated guiding tracks. Then the guided droplets move along the guiding track due to the lowered surface energy when they flow along the track. In addition, simultaneous droplet guiding and storing process has been demonstrated. An array of storage chambers placed in each track could store each train containing differently concentrated droplets. The proposed method will be useful for distribution of droplets for further processes or storing for multiplex, large-scale, dynamic assays over time.  相似文献   

7.
Xu J  Ahn B  Lee H  Xu L  Lee K  Panchapakesan R  Oh KW 《Lab on a chip》2012,12(4):725-730
We present a multiple-droplet clustering device that can perform sequential droplet trapping and storing. Shape-dependent droplet manipulation in forward and backward flows has been incorporated to achieve high trapping and storing efficiency in a 10 × 12 array of clustering structures (e.g., storing well, storing chamber, trapping well, and guiding track). In the forward flow, flattened droplets are trapped in each trapping well. In the backward flow, the trapped droplets are released from the trapping well and follow the guiding tracks to their corresponding storing wells. The guided droplets float up out of the confining channel to the super stratum of the storing chamber due to interfacial energy and buoyancy effects. This forward/backward flow-based trapping/storing process can be repeated several times to cluster droplets with different contents and samples in the storing chambers. We expect that the proposed platform will be a valuable tool to study complex droplet-based reactions in clustered droplets.  相似文献   

8.
Mazutis L  Griffiths AD 《Lab on a chip》2012,12(10):1800-1806
We report a microfluidic approach, which allows selective and controlled 1 : 1, 2 : 1 or 3 : 1 droplet fusion. A surfactant-stabilized droplet with an interfacial surfactant coverage, Γ, of >98% will fuse spontaneously with a second droplet when Γ of the latter droplet is <16%. However, when Γ of the second droplet is ~66%, the two droplets will not fuse, unless they have previously been brought into contact for critical time τ. Therefore, controlling the number of droplets in contact for time τ allows precise control over the number of fused droplets. We have demonstrated efficient (proportion of droplets coalesced p(c) = 1.0, n > 1000) and selective 1 : 1, 2 : 1 or 3 : 1 droplet fusion (proportion of correctly fused droplets p(s) > 0.99, n > 1000). Coalescence in this regime is induced by hydrodynamic flow causing interface separation and is efficient at different Ca numbers and using different dispersed phases, continuous phases and surfactants. However, when Γ of the second droplet is ~96% coalescence is no longer observed. Droplet-based microfluidic systems, in which each droplet functions as an independent microreactor, are proving a promising tool for a wide range of ultrahigh-throughput applications in biology and chemistry. The addition of new reagents to pre-formed droplets is critical to many of these applications and we believe the system described here is a simple and flexible method to do so, as well as a new tool to study interfacial stability phenomena.  相似文献   

9.
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl‐dextran using a microfluidic flow‐focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow‐focusing channels for the simultaneous formation and co‐location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48 h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell‐mimicking compartments.  相似文献   

10.
Lai D  Frampton JP  Sriram H  Takayama S 《Lab on a chip》2011,11(20):3551-3554
Exposure of a negative photoresist-coated glass slide with diffused light from the backside through a mask with disconnected features provides multi-level rounded channels with narrow orifices in one exposure. Using these structures, we construct microfluidic systems capable of creating aqueous two-phase system droplets where one aqueous phase forms droplets and the other aqueous phase forms the surrounding matrix. Unlike water-in-oil droplet systems, aqueous two-phase systems can have very low interfacial tensions that prevent spontaneous droplet formation. The multi-level channels fabricated by backside lithography satisfy two conflicting needs: (i) the requirement to have narrowed channels for efficient valve closure by channel deformation and (ii) the need to have wide channels to reduce the flow velocity, thus reducing the capillary number and enhancing droplet formation.  相似文献   

11.
Droplet microfluidics has emerged as a powerful tool for a diverse range of biomedical and industrial applications such as single-cell analysis, directed evolution, and metabolic engineering. In these applications, droplet sorting has been effective for isolating small droplets encapsulating molecules, cells, or crystals of interest. Recently, there is an increased interest in extending the applicability of droplet sorting to larger droplets to utilize their size advantage. However, sorting throughputs of large droplets have been limited, hampering their wide adoption. Here, we report our demonstration of high-throughput fluorescence-activated droplet sorting of 1 nL droplets using an upgraded version of the sequentially addressable dielectrophoretic array (SADA), which we reported previously. The SADA is an array of electrodes that are individually and sequentially activated/deactivated according to the speed and position of a droplet passing nearby the array. We upgraded the SADA by increasing the number of driving electrodes constituting the SADA and incorporating a slanted microchannel. By using a ten-electrode SADA with the slanted microchannel, we achieved fluorescence-activated droplet sorting of 1 nL droplets at a record high throughput of 1752 droplets/s, twice as high as the previously reported maximum sorting throughput of 1 nL droplets.  相似文献   

12.
We report a microfluidic technique for high-throughput generation of droplets of nanolitre volume in parallel channels with online control of the volumes, volume fraction and distribution of droplet volumes with the use of two external valves.  相似文献   

13.
Herein we offer a simple method to produce non-spherical emulsion droplets stabilized by freshly formed Mg(OH)(2) nanoparticles (MPs). The non-spherical degree of droplets as a function of experiment conditions was investiged and the origins of the presence of non-spherical droplets were discussed. The results of optical microscope images show that stable spherical droplets can be fused into non-spherical at given aging temperature. It is also recognized that particle concentration, oil/water ratio and aging time significantly affect droplet fusion and excess particles that are not adsorbed on the oil/water interface are helpful in restraining droplet fusion. Based on the TEM, XRD and Fluorescence confocal microscopy results, the origins of droplet fusion are inferred from the presence of vacant holes in the particle layer. Because of Oswald ripening, particles on droplet surfaces grow larger than the freshly precipitated ones under a given aging temperature. The growth of particles results in the reduction of total cover area of particle layer and thus creates vacant holes in the particle layer which would cause partial coalescence of droplets once they collide. Thus, these findings can offer a simple alternative to obtain a large amount of non-spherical emulsion droplets but also can help the preparation of non-spherical colloid particles.  相似文献   

14.
Surface-induced droplet fusion in microfluidic devices   总被引:1,自引:0,他引:1  
Here we demonstrate a new method for droplet fusion based on a surface energy pattern on the walls of a microfluidic device, that does not require active elements nor accurate synchronization of the droplets.  相似文献   

15.
微流控芯片中形成的微液滴粒径均一、可控,与传统的连续流体系相比,具有能实现试剂的快速混合、通量更高等优点.本文介绍了微流控芯片中由微通道控制的微液滴的形成、分裂、合并、混合、分选和捕获等微液滴操纵技术,以及微液滴技术在纳米粒子、聚合物微粒的合成、纳米粒子自组装、蛋白质结晶研究和DNA、细胞分析等领域的研究进展.  相似文献   

16.
We demonstrate the combination of a rails and anchors microfluidic system with laser forcing to enable the creation of highly controllable 2D droplet arrays. Water droplets residing in an oil phase can be pinned to anchor holes made in the base of a microfluidic channel, enabling the creation of arrays by the appropriate patterning of such holes. The introduction of laser forcing, via laser induced thermocapillary forces to anchored droplets, enables the selective extraction of particular droplets from an array. We also demonstrate that such anchor arrays can be filled with multiple, in our case two, droplets each and that if such droplets have different chemical contents, the application of a laser at their interface triggers their merging and a chemical reaction to take place. Finally by adding guiding rails within the microfluidic structure we can selectively fill large scale arrays with monodisperse droplets with significant control over their contents. In this way we make a droplet array filled with 96 droplets containing different concentrations of fluorescent microparticles.  相似文献   

17.
Single cell analysis is of great significance to understand the physiological activity of organisms.Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached1021 Hz with the aqueous phase flow rate of 1 m L/min and the oil phase flow rate of 15 mL /min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5× 10~4cells/mL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput.  相似文献   

18.
Microfluidic droplet sorting enables the high-throughput screening and selection of water-in-oil microreactors at speeds and volumes unparalleled by traditional well-plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high-throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI-MS). Droplets are split, one portion is analyzed by ESI-MS, and the second portion is sorted based on the MS result. Throughput of 0.7 samples s−1 is achieved with 98 % accuracy using a self-correcting and adaptive sorting algorithm. We use the system to screen ≈15 000 samples in 6 h and demonstrate its utility by sorting 25 nL droplets containing transaminase expressed in vitro. Label-free ESI-MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.  相似文献   

19.
Microfluidic droplet sorting enables the high‐throughput screening and selection of water‐in‐oil microreactors at speeds and volumes unparalleled by traditional well‐plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high‐throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI‐MS). Droplets are split, one portion is analyzed by ESI‐MS, and the second portion is sorted based on the MS result. Throughput of 0.7 samples s?1 is achieved with 98 % accuracy using a self‐correcting and adaptive sorting algorithm. We use the system to screen ≈15 000 samples in 6 h and demonstrate its utility by sorting 25 nL droplets containing transaminase expressed in vitro. Label‐free ESI‐MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.  相似文献   

20.
Jung SY  Retterer ST  Collier CP 《Lab on a chip》2010,10(24):3373-3376
This paper describes stepwise on-demand generation and fusion of femtolitre aqueous droplets based on interfacial tension. Sub-millisecond reaction times from droplet fusion were demonstrated, as well as a reversible chemical toggle switch based on alternating fusion of droplets containing acidic or basic solution, monitored with the pH-dependent emission of fluorescein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号