首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of (111)-oriented spinel ferrite Al0.5Fe2.5O4 have been prepared by a pulsed-laser deposition (PLD) technique on α-Al2O3 (0001) substrates. The films exhibit cluster-glass behaviors with a spin-freezing temperature, Tg, near or above room temperature. The magnetization was found to increase following light irradiation below Tg, which indicates the photoinduced melting of cluster-glass states. An analysis comparing the dynamic behavior of magnetic response to light irradiation between zero-field-cooled (ZFC) states and field-cooled (FC) states at 10 K under various light intensities, I, revealed that the direct photoexcitation of spins occurs when I≤0.78 mW/mm2, while the thermal heating effect following the light absorption of the samples also contributes to the enhancement of magnetization when I≥1.22 mW/mm2. The magnetization of the films could be controlled by light irradiation even at room temperature. This suggests the possibility of utilizing these films in the development of novel magneto-optical memory devices.  相似文献   

2.
It is found that samples of manganites La0.9Sr0.1MnO3 (single crystal), Eu0.7A0.3MnO3 (A=Ca, Sr; ceramics), and La0.1Pr0.6Ca0.3MnO3 and La0.84Sr0.16MnO3 (thin epitaxial films) that are either field-cooled (in a magnetic field) or zero-field-cooled differ in low-temperature magnetization, and the hysteresis loop of field-cooled samples exhibits a displacement. This displacement signifies that a ferro-antiferromagnetic state occurs in these samples. The exchange integral J~10?6 eV is calculated from this displacement, which describes the exchange Mn-O-Mn coupling through the interface ferromagnetic droplet-antiferromagnetic matrix. The magnetoresistance and volume magnetostriction of La1?x SrxMnO3 single crystals exhibit similar dependences on x, temperature, and the magnetic field in the vicinity of the Curie point, which points to the fact that these dependences are due to the same reason, namely, the occurrence of a magnetic two-phase ferro-antiferromagnetic state caused by strong s-d exchange.  相似文献   

3.
We study the elasticity of random stiff fiber networks. The elastic response of the fibers is characterized by a central force stretching stiffness as well as a bending stiffness that acts transverse to the fiber contour. Previous studies have shown that this model displays an anomalous elastic regime where the stretching mode is fully frozen out and the elastic energy is completely dominated by the bending mode. We demonstrate by simulations and scaling arguments that, in contrast to the bending dominated elastic energy, the equally important elastic forces are to a large extent stretching dominated. By characterizing these forces on microscopic, mesoscopic and macroscopic scales we find two mechanisms of how forces are transmitted in the network. While forces smaller than a threshold Fc are effectively balanced by a homogeneous background medium, forces larger than Fc are found to be heterogeneously distributed throughout the sample, giving rise to highly localized force chains known from granular media.  相似文献   

4.
We report the effect of an anisotropic polymer network formed from an achiral photoreactive monomer in a short-pitch chiral SmC* phase on the distortion and the unwinding of the helical structure of the ferroelectric phase. The electro-optical behaviour and ferroelectric properties were experimentally determined for films containing various polymer concentrations. The critical field, Eu, for the transition from the distorted structure to the homogeneous state was measured as a function of polymer concentration. A linear increase of Eu versus polymer concentration was observed, showing that the helical structure of the short-pitch SmC* phase was stabilized by the polymer network. This behaviour was expected to be a consequence of the increase of the apparent elastic constants of the ferroelectric liquid crystal stabilized by the anisotropic polymer network films. The polymer network morphology was investigated using atomic-force microscopy, revealing a twisted structure of the polymer fibers. This twisted structure was transferred onto a polymer network during the polymerization process within a short-pitch SmC* phase. The increase of the apparent elasticity can then be interpreted by a strong interaction between polymer network and the liquid-crystal molecules. From our experimental data, the coupling coefficient, Wp, characterizing this interaction was evaluated for all studied polymer concentrations.  相似文献   

5.
A theory of van der Waals (vdW) interaction between an atom (in ground or excited state) and a birefringent dielectric surface with an arbitrary orientation of the principal optic axis (C-axis) is presented. Our theoretical approach is based on quantum-mechanical linear response theory, using generalized susceptibilities for both atom and electromagnetic field. Resonant atom-surface coupling is predicted for excited-state atoms interacting with a dispersive dielectric surface, when an atom de-excitation channel gets into resonance with a surface polariton mode. In the non-retarded regime, this resonant coupling can lead to enhanced attractive or repulsive vdW surface forces, as well as to a dissipative coupling increasing the excited-state relaxation. We show that the strongly non-scalar character of the interaction with the birefringent surface produces a C-axis-dependent symmetry-breaking of the atomic wavefunction. Changes of the C-axis orientation may also lead to a frequency shift of the surface polariton mode, allowing for tuning on or off the resonant coupling, resulting in a special type of engineering of surface forces. This is analysed here in the case of cesium 6D 3/2 level interacting with a sapphire interface, where it is shown that an adequate choice of the sapphire C-axis orientation allows one to transform vdW surface attraction into repulsion, and to interpret recent experimental observations based on selective reflection methods [H. Failache etal., Phys. Rev. Lett. 83, 5467 (1999)]. Received 24 January 2001  相似文献   

6.
Epitaxial orthorhombic YMnO3 thin films, (0 0 1) oriented, have been grown by pulsed laser deposition on (0 0 1)SrTiO3 substrates. Their crystal structure and magnetic response have been studied in detail. Although bulk o-YMnO3 is antiferromagnetic, our magnetic measurements reveal intriguing thermal hysteresis between the zero-field-cooled and field-cooled curves below the onset of the antiferromagnetic ordering temperature, thus signaling a more complex magnetic structure with net ferromagnetic moments. We discuss on the possible origin of this net magnetization and we have found a correlation of the magnetic response with the strain state of the films. We propose that substrate-induced strain modifies the subtle competition of magnetic interactions and leads to a non-collinear magnetic state that can thus be tuned by strain engineering.  相似文献   

7.
Magnetic exchange coupling has been observed for ultrathin films of yttrium iron garnet (Y3Fe5O12 or YIG). Single-crystalline YIG films were prepared on yttrium aluminium garnet (Y3Al5O12 or YAG) substrates by pulsed laser deposition. (111) and (110) oriented substrates were used. Film thicknesses were varied from 180 ? to 4600 ?. Epitaxial growth of YIG on YAG was obtained in spite of the lattice mismatch of 3%. Magnetic hysteresis loops recorded for ultrathin YIG films have a “bee-waist” shape and show a coupling between two different magnetic phases. The first phase is magnetically soft YIG. A composition study by secondary ion mass spectroscopy shows the second phase to be Y3Fe5-xAlxO12 due to the interdiffusion of Fe and Al at the film/substrate interface. This compound is known to be magnetically harder and to have weaker magnetization than YIG. The coupling of the two phases leads to a hysteresis loop displacement at low temperatures. This displacement varies differently with film thickness for two substrate orientations. Assuming an interfacial coupling, the maximal interaction energy is estimated to be about 0.17 erg/cm2 at 5 K for (111) oriented sample. Received 3 June 2002 / Received in final form 7 October 2002 Published online 27 January 2003 RID="a" ID="a"Presently at LPM, Université H. Poincaré, BP 239, 54506 Vandœuvre-lès-Nancy e-mail: popova@lpm.u-nancy.fr  相似文献   

8.
Inelastic and elastic neutron scattering have been used to study the dynamics and structure of monolayer films of butane (CH3(CH2)2CH3) adsorbed on a graphitized carbon powder at 77 K. In addition to the intramolecular torsional modes found in the bulk solid, the inelastic spectra of the films contain new excitations associated with coupling of the molecular motion to the substrate. Model calculations are described which show the monolayer excitation spectrum to be sensitive to the orientation of the adsorbed butane molecule and the location and strength of the bonds to the substrate. For butane we infer that the molecule is adsorbed with the plane of the carbon skeleton parallel to the graphite layers. We have also used elastic neutron diffraction to investigate the possibility of long-range order in the butane films. Although we have not found Bragg peaks indicative of an ordered two-dimensional structure in a 1.5 layer film at 81 K, a large modulation of the graphite 002 Bragg reflection is observed. The experimental approach discussed here would seem to be applicable to the study of the dynamics, molecular orientation, and bonding of other hydrogenous adsorbates as a function of film thickness and temperature. Measurements are presently being extended to propane (CH3CH2CH3) and ethane (CH3CH3) adsorbed on graphite.  相似文献   

9.
Bi4Ti3O12 (BIT) films were prepared on Pt/TiO2/SiO2/Si substrates by the sol-gel method. A low electric field was in-situ applied to BIT films during rapid thermal annealing (RTA). It was first found that a bias electric field has great influence on the structure, orientation, and morphology of BIT films at proper temperatures. Under the electric field of very low V/cm, BIT films show highly c-axis-oriented growth with second phase of bismuth oxide at 600 and 650 °C. The possible origin is proposed. On one hand, the electrostatic energy provides an extra driving force and the co-interaction of the electrostatic energy and interface energy promotes the c-axis-oriented growth of the BIT grains. On the other hand, the second phase of bismuth oxide produced during RTA in an electric field also plays an important role in the control of film orientation.  相似文献   

10.
The effects of Fe-doping and Fe-N-codoping on the magnetic properties of SnO2, prepared by chemical co-precipitation technique, are investigated in details. We found that the paramagnetism is the dominant magnetic interaction in Fe doped SnO2. A weak antiferromagnetic coupling between Fe2+ ions is also confirmed through Zero field-cooled (ZFC) and field-cooled (FC) magnetization studies. On the other hand, hystersis behavior is observed for Fe-N-codoped SnO2 samples with coercivity Hc∼420 and 352 Oe for x=0.05 and 0.10, respectively. As no other secondary or impurity phase is detected by XRD study and the presence of N is confirmed by EDX analysis, this observed ferromagnetism is originated due to the substitution of N in Sn1−xFexO2. N doping at the oxygen site can be regarded as defect and introduces a hole in this system. As a result, a hole-induced ferromagnetism might be the origin of the observed ferromagnetism in Fe-N-codoped SnO2 samples.  相似文献   

11.
We report detailed studies of the non-equilibrium magnetic behavior of antiferromagnetic Co3O4 nanoparticles. The temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects, and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the system shows some features that are characteristic of nanoparticle magnetism such as bifurcation of field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities and a slow relaxation of magnetization. However, strangely, the temperature at which the ZFC magnetization peaks coincides with the bifurcation temperature and does not shift on application of magnetic fields up to 1 kOe, unlike most other nanoparticle systems. Aging effects in these particles are negligible in both FC and ZFC protocols, and memory effects are present only in the FC protocol. We show that Co3O4 nanoparticles constitute a unique antiferromagnetic system which enters into a blocked state above the average Néel temperature.  相似文献   

12.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

13.
Cr-doped manganites Sr0.9Ce0.1Mn1−yCryO3 (y=0, 0.05, and 0.10) have been systematically investigated by X-ray, magnetic, transport, and elastic properties measurements. For parent compound Sr0.9Ce0.1MnO3, it undergoes a metal-insulator (M-I) transition at 318 K, which is suggested to originate from a first-order structural transition accompanied by Jahn-Teller (JT) transition. With increasing Cr doping content, the JT transition temperature decreases. The Cr doping suppresses the antiferromagnetic (AFM) state and makes the system spin-glass (SG) behavior at low temperatures. In the vicinity of JT transition temperatures, the softening of Young's modulus originating from the coupling of the orbital (quadrupolar) moment of the eg orbital of Mn3+ ion to the elastic strain has been observed. The anomalous Young's modulus properties imply the electron-phonon coupling due to the JT effect may play an important role in the system.  相似文献   

14.
The results of first-principles theoretical study of the structural, electronic and optical properties of SrCl2 in its cubic structure, have been performed using the full-potential linear augmented plane-wave method plus local orbitals (FP-APW+lo) as implemented in the WIEN2k code. In this approach both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for the exchange-correlation (XC) potential. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. We performed these calculations with and without spin-orbit interactions. Including spin-orbit coupling cause to lifts the triple degeneracy at Γ point and a double degeneracy at X point. Results are given for structural properties. The pressure dependence of elastic constants and band gaps are investigated. The dielectric function, reflectivity spectra and refractive index are calculated up to 30 eV. Also we calculated the pressure and volume dependence of the static optical dielectric constant.  相似文献   

15.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

16.
We studied the photo-excitation process, the relaxation of the photo-excited state towards the stable state, and the photo-induced magnetic properties of the Prussian blue analogue Rb0.52Co [Fe(CN)6]0.84, 2.3 H2O. Magnetic, M?ssbauer and reflectivity measurements have been performed during and after illumination. The efficiency of the photo-excitation device is maximum at nm. The process, however, is severely hindered by bulk absorption of the light; it is rapidly completed at the surface of the sample and then proceeds slowly in the bulk. Under the effect of photo-excitation the system turns from a dia- to a ferri- magnet, with a value K, indicative of the transformation of the material due to the following optical electron transfer: Thermal relaxation towards the stable electronic state is observed in the 95-110 K temperature interval, obeying a self-accelerated kinetics. At low temperature, a weak, non-exponential, relaxation is detected. These features are discussed in terms of co-operative effects in the frontal process of photo- excitation. The peculiarities of a photo-excited state created below the magnetic ordering temperature are discussed. A metastable magnetic state has been observed in low fields, denoted “Raw Photo-Induced State" (RPI), with a magnetization curve in-between the field-cooled and zero-field-cooled curves. Received 12 March 1999 and Received in final form 11 December 1999  相似文献   

17.
Thin epitaxial films of Re0.6Ba0.4MnO3 (Re = La, Pr, Nd, Gd) on (001)-oriented single crystal SrTiO3 and ZrO2(Y2O3) substrates have been prepared and studied. All films possess a cubic perovskite structure, except for the film with Re = La, which exhibited a rhombohedral distortion of the perovskite lattice. The results show evidence for the presence of two magnetic phases, ferromagnetic (FM) and antiferromagnetic (AFM), in the films studied: (i) the magnetization isotherm M(H) appears as a superposition of a linear component (characteristic of antiferromagnets) and a small spontaneous magnetization component; (ii) the magnetic moment per formula unit is significantly reduced as compared to the value expected for the complete FM or ferrimagnetic ordering; (iii) there is a difference between magnetizations of the samples cooled with and without an applied magnetic field, which is preserved in the entire range of magnetic fields studied (50 kOe); (iv) the temperature dependence of the magnetization M(T) in strong magnetic fields is close to linear (for the composition with Re = Gd, M(T) is described by a Langevin function for superparamagnets with a cluster moment of 2μB); and (v) the magnetization hysteresis loops of the field-cooled samples are shifted along the field axis. The exchange integral (characterizing the Mn-O-Mn coupling via the FM-AFM phase boundary) estimated from the latter shift is | J|=10?6 eV. This value is two orders of magnitude lower than the negative exchange integral between the FM layers in ReMnO3, which makes the presence of a transition layer at the FM-AFM phase boundary unlikely. The temperature dependences of electrical resistance and magnetoresistance exhibit maxima at the Curie temperature (TC), where the magnetoresistance reaches a colossal value. This behavior indicates that the two-phase magnetic state is caused by a strong s-d exchange.  相似文献   

18.
We study the evolution of an elastic string, serving as model for a domain wall, into the pinned state at driving forces slightly below the depinning threshold force Fc. We quantify the temporal evolution of the string by an activity function A(t) representing the fraction of active nodes at time t and find three distinct dynamic regimes. There is an initial stage of fast decay of the activity; in the second, intermediate, regime, an exponential decay of activity is observed; and, eventually, the fast collapse of the string towards its final pinned state results in decay in the activity with Ar∼(tpt)ψ, where tp is the pinning time in the finite system involved.  相似文献   

19.
We demonstrate a very simple and reliable method of manufacturing clean, single-crystalline Y2O3 films on Nb(110) substrates in situ. The method exploits the oxygen bulk contamination of Nb as a source of clean oxygen. For substrate temperatures above 800 K oxygen segregation to the Nb surface is so efficient, that yttrium becomes oxidized during deposition without any background oxygen pressure required in the ultrahigh vacuum system. The crystallinity and stoichiometry of these films can be tuned by the deposition temperature. For Y deposition at 1300 K the formation of well-ordered (111)-oriented Y2O3 films is achieved. Received: 19 April 2000 / Accepted: 20 April 2000 / Published online: 23 August 2000  相似文献   

20.
β-FeSi2 thin films were prepared on Si (1 1 1) substrates by pulsed laser deposition (PLD) with a sintering FeSi2 target and an electrolytic Fe target. The thin films without micron-size droplets were prepared using the electrolytic Fe target; however, the surface without droplets was remarkably rougher using the Fe target than using the FeSi2 target. After deposition at 600 °C and then annealing at 900 °C for 20 h, XRD indicated that the thin film prepared using the Fe target had a poly-axis-orientation, but that prepared using the FeSi2 target had a one-axis-orientation. The PL spectra of the thin films prepared using the FeSi2 and Fe targets at a growth temperature of 600 °C and subsequently annealed at 900 °C for 20 h had A-, B- and C-bands. Moreover, it was found that the main peak at 0.808 eV (A-band) in the PL spectrum of the thin films prepared using the FeSi2 target was the intrinsic luminescence of β-FeSi2 from the dependence of PL peak energy on temperature and excitation power density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号