首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
В работе устанавливае тся оценка (*) |L n (???| ≦ ? (?;α n) для положительных оп ераторов, определенн ых на конечном или бесконе чном интервале (a,b), гдеL n(1,χ)≡1,L n((t?χ)2;χ)≦K? 2(χ)α n 2 (x∈(a,b)) ;и \(\omega _\varphi (f;\delta ) = \mathop {\sup }\limits_{0 \leqq h \leqq \delta ,x \pm h\varphi (x) \in (a,b)} \left| {f(x - h\varphi (x)) - 2f(x) + f(x + h\varphi (x))} \right|\) модуль гладкости?, св язанный с ? (функция? удовлетворяет некот орым условиям регуля рности). С помощью (*) для некотор ых {L n } получена характеристика тех ф ункций?, для которыхL n (?)??=o(1) равном ерно на (a, b). Наконец, рассматриваются слу чай насыщения и случай так называем ой неоптимальной апп роксимации. Результаты применяю тся к операторам Саса —Миракяна, Баскакова, Мейер-Кëни га и Целлера, гамма и бета операторам, а также к н екоторым операторам типа свер тки.  相似文献   

2.
A sequence of perturbations $$\begin{gathered} \dot x = A_n x + B_n u, \parallel u\parallel _{L^2 } \leqslant 1, (P_n ) \hfill \\ x\left( o \right) = x^o , n = 0, 1, 2, 3,..., \hfill \\ \end{gathered} $$ is given of the linear-quadratic optimal control problem consisting of minimizing $$\int_0^1 {((u - \tilde u)^T (u - \tilde u) + (x - \tilde x)^T (x - \tilde x))dt,} $$ subject to (P0). We assume that {A n} bounded inL 1 and {B n} is bounded inL 2. Then, a necessary and sufficient condition so that, for every?, \(\tilde u\) , \(\tilde x\) L 2, and for everyx 0, the optimal control for (Pn) converges strongly inL 2 to the optimal control for (P0) and the optimal state converges uniformly is thatA nA 0 weakly inL 1 andB nB 0 strongly inL 2.  相似文献   

3.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

4.
We consider the function system {cos4} n=0 , {sin(4n ? 1)θ} n=1 , which arises in the Frankl problem in the theory of elliptic-hyperbolic equations. We show that this system is a Riesz basis in the space L 2(0, π/2) and construct the biorthogonal system.  相似文献   

5.
6.
Convergence of weighted sums of tight random elements {Vn} (in a separable Banach space) which have zero expected values and uniformly bounded rth moments (r > 1) is obtained. In particular, if {ank} is a Toeplitz sequence of real numbers, then | Σk=1ankf(Vk)| → 0 in probability for each continuous linear functional f if and only if 6Σk=1ankVk 6→ 0 in probability. When the random elements are independent and max1≤k≤n | ank | = O(n?8) for some 0 < 1s < r ? 1, then |Σk=1ankVk 6→ 0 with probability 1. These results yield laws of large numbers without assuming geometric conditions on the Banach space. Finally, these results can be extended to random elements in certain Fréchet spaces.  相似文献   

7.
For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. $$Tf(x,x_n ) = P.V.\int_{\mathbb{R}^n } {, f(x - y,x_n ) - } \gamma (y))_{\left| y \right|^{n - 1} }^{\Omega (v)} dy$$ where Σ is homogeneous of order 0, $ \int_{\Sigma _{n \lambda } } {\Omega (y')dy'} = 0 $ . For a certain class of hypersurfaces, T is shown to be bounded on Lp(Rn) provided Ω∈L α 1 n?2),P>1.  相似文献   

8.
It is proved that , where U(a, r) is the ball of radius r with center at the pointa, is the smallest closed convex set containing the kernel of any sequence {yn} obtained from the sequence {xn} by means of a regular transformation (cnk) satisfying the condition , where x, xn, cnk (n, k=1, 2,...) are complex numbers.Traslated from Matematicheskie Zametki, Vol. 22, No. 6, pp. 815–823, December, 1977.  相似文献   

9.
Let {Xk} be a sequence of i.i.d. random variables with d.f. F(x). In the first part of the paper the weak convergence of the d.f.'s Fn(x) of sums is studied, where 0<α≤2, ank>0, 1≤k≤mn, and, as n→∞, bothmax 1≤k≤mna nk→0 and . It is shown that such convergence, with suitably chosen An's and necessarily stable limit laws, holds for all such arrays {αnk} provided it holds for the special case αnk=1/n, 1≤k≤n. Necessary and sufficient conditions for such convergence are classical. Conditions are given for the convergence of the moments of the sequence {Fn(x)}, as well as for its convergence in mean. The second part of the paper deals with the almost sure convergence of sums , where an≠0, bn>0, andmax 1≤k≤n ak/bn→0. The strong law is said to hold if there are constants An for which Sn→0 almost surely. Let N(0)=0 and N(x) equal the number of n≥1 for which bn/|an|<x if x>0. The main result is as follows. If the strong law holds,EN (|X1|)<∞. If for some 0<p≤2, then the strong law holds with if 1≤p≤2 and An=0 if 0<p<1. This extends the results of Heyde and of Jamison, Orey, and Pruitt. The strong law is shown to hold under various conditions imposed on F(x), the coefficients an and bn, and the function N(x). Proceedings of the Seminar on Stability Problems for Stochastic Models, Moscow, 1993.  相似文献   

10.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

11.
In this paper we establish a necessary and sufficient condition for orthonormal systems, subject to which there exist rearranged series ∑σαn?n(x) converging almost everywhere to functions h(x) ¯? L2[0, 1]. In particular, we show, for an arbitrary complete orthonormal system, that such series exist.  相似文献   

12.
Suppose Φp, E (p>0 an integer, E ?[0, 2π]) is a family of positive nondecreasing functions? x(t) (t>0, x E) such that? x(nt)≤nP ? x(t) (n=0,1,...), tn is a trigonometric polynomial of order at most n, and Δ h l (f, x) (l>0 an integer) is the finite difference of orderl with step h of the functionf.THEOREM. Supposef (x) is a function which is measurable, finite almost everywhere on [0, 2π], and integrable in some neighborhood of each point xε E,? X εΦp,E and $$\overline {\mathop {\lim }\limits_{\delta \to \infty } } |(2\delta )^{ - 1} \smallint _{ - \delta }^\delta \Delta _u^l (f,x)du|\varphi _x^{ - 1} (\delta ) \leqslant C(x)< \infty (x \in E).$$ . Then there exists a sequence {t n } n=1 which converges tof (x) almost everywhere, such that for x ε E $$\overline {\mathop {\lim }\limits_{n \to \infty } } |f(x) - l_n (x)|\varphi _x^{ - 1} (l/n) \leqslant AC(x),$$ where A depends on p andl.  相似文献   

13.
For fixed p (0 ≤ p ≤ 1), let {L0, R0} = {0, 1} and X1 be a uniform random variable over {L0, R0}. With probability p let {L1, R1} = {L0, X1} or = {X1, R0} according as X112(L0 + R0) or < 12(L0 + R0); with probability 1 ? p let {L1, R1} = {X1, R0} or = {L0, X1} according as X112(L0 + R0) or < 12(L0 + R0), and let X2 be a uniform random variable over {L1, R1}. For n ≥ 2, with probability p let {Ln, Rn} = {Ln ? 1, Xn} or = {Xn, Rn ? 1} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), with probability 1 ? p let {Ln, Rn} = {Xn, Rn ? 1} or = {Ln ? 1, Xn} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), and let Xn + 1 be a uniform random variable over {Ln, Rn}. By this iterated procedure, a random sequence {Xn}n ≥ 1 is constructed, and it is easy to see that Xn converges to a random variable Yp (say) almost surely as n → ∞. Then what is the distribution of Yp? It is shown that the Beta, (2, 2) distribution is the distribution of Y1; that is, the probability density function of Y1 is g(y) = 6y(1 ? y) I0,1(y). It is also shown that the distribution of Y0 is not a known distribution but has some interesting properties (convexity and differentiability).  相似文献   

14.
LetF be a mapping of the Banach spaceX into itself. A convergence theorem for the iterative solution ofF(x)=0 is proved for the multipoint algorithmx n+1=x n ?ø(x n ), where $$\phi (x) = F\prime_x^{ - 1} \left[ {F(x) + F\lgroup {x - F\prime_x^{ - 1} F(x)} \rgroup} \right]$$ andF′x is the Frechet derivative ofF. The theorem guarantees that, under appropriate conditions onF, the multipoint sequence {x n } generated by ø converges cubically to a zero ofF. The algorithm is applied to the nonlinear Chandrasekhar integral equation $$\frac{1}{2}\omega _0 x(t)\int_0^1 {\frac{{tx(s)}}{{s + t}}ds - x(t) + 1 = 0}$$ where ω0>0. A discretization of the equations of iteration is discussed, and some numerical results are given.  相似文献   

15.
Let f??L 2?? be a real-valued even function with its Fourier series $\frac {a_{0}}{2}+\sum\limits_{n=1}^{\infty}{a_{n}}\cos nx$ , and let S n (f,x) be the nth partial sum of the Fourier series, n?R1. The classical result says that if the nonnegative sequence {a n } is decreasing and $\lim\limits_{n\to\infty} a_{n} =0$ , then $\lim\limits_{n\to\infty} \|{f-S_{n}(f)}\|_{L}=0$ if and only if $\lim\limits_{n\to\infty} a_{n}\log n=0$ . Later, the monotonicity condition set on {a n } is essentially generalized to MVBV (Mean Value Bounded Variation) condition. Very recently, Kórus further generalized the condition in the classical result to the so-called GM7 condition in real space. In this paper, we give a complete generalization to the complex space.  相似文献   

16.
The paper deals with the Sturm-Liouville operator $$ Ly = - y'' + q(x)y, x \in [0,1], $$ generated in the space L 2 = L 2[0, 1] by periodic or antiperiodic boundary conditions. Several theorems on the Riesz basis property of the root functions of the operator L are proved. One of the main results is the following. Let q belong to the Sobolev spaceW 1 p [0, 1] for some integer p ≥ 0 and satisfy the conditions q (k)(0) = q (k)(1) = 0 for 0 ≤ ks ? 1, where sp. Let the functions Q and S be defined by the equalities $$ Q(x) = \int_0^x {q(t)dt, S(x) = Q^2 (x)} $$ and let q n , Q n , and S n be the Fourier coefficients of q, Q, and S with respect to the trigonometric system $ \{ e^{2\pi inx} \} _{ - \infty }^\infty $ . Assume that the sequence q 2n ? S 2n + 2Q 0 Q 2n decreases not faster than the powers n ?s?2. Then the system of eigenfunctions and associated functions of the operator L generated by periodic boundary conditions forms a Riesz basis in the space L 2[0, 1] (provided that the eigenfunctions are normalized) if and only if the condition $$ q_{2n} - s_{2n} + 2Q_0 Q_{2n} \asymp q_{ - 2n} - s_{2n} + 2Q_0 Q_{ - 2n} , n > 1, $$ holds.  相似文献   

17.
Let Ω ?C be an open set with simply connected components and suppose that the functionφ is holomorphic on Ω. We prove the existence of a sequence {φ (?n)} ofn-fold antiderivatives (i.e., we haveφ (0)(z)∶=φ(z) andφ (?n)(z)= (?n?1)(z)/dz for alln ∈ N0 and z ∈ Ω) such that the following properties hold:
  1. For any compact setB ?Ω with connected complement and any functionf that is continuous onB and holomorphic in its interior, there exists a sequence {n k} such that {φ?nk} converges tof uniformly onB.
  2. For any open setU ?Ω with simply connected components and any functionf that is holomorphic onU, there exists a sequence {m k} such that {φ?mk} converges tof compactly onU.
  3. For any measurable setE ?Ω and any functionf that is measurable onE, there exists a sequence {p k} such that {φ (-Pk)} converges tof almost everywhere onE.
  相似文献   

18.
A high order discretization by spectral collocation methods of the elliptic problem $$\begin{gathered} \left\{ \begin{gathered} A_{A,b} u \equiv - \nabla [A(x)\nabla u(x)] + b(x)u(x) = c(x){\text{ on}}\;\Omega \; = ( - 1,1)^2 \hfill \\ u\left| {\partial \Omega \equiv 0,} \right. \hfill \\ \end{gathered} \right. \hfill \\ \hfill \\ \end{gathered} $$ is considered where A(x)=a(x)I 2, x=(x [1],x [2]) and I 2 denotes the 2×2 identity matrix, giving rise to a sequence of dense linear systems that are optimally preconditioned by using the sparse Finite Difference (FD) matrix-sequence {A n } n over the nonuniform grid sequence defined via the collocation points [11]. Here we propose a preconditioning strategy for {A n } n based on the “approximate factorization” idea. More specifically, the preconditioning sequence {P n } n is constructed by using two basic structures: a FD discretization of (1) with A(x)=I 2 over the collocation points, which is interpreted as a FD discretization over an equidistant grid of a suitable separable problem, and a diagonal matrix which adds the informative content expressed by the weight function a(x). The main result is the proof that the sequence {P n ?1 A n } n is spectrally clustered at unity so that the solution of the nonseparable problem (1) is reduced to the solution of a separable one, this being computationally more attractive [2,3]. Several numerical experiments confirm the goodness of the discussed proposal.  相似文献   

19.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

20.
Пустьq∈(1, 2) иL=(q?1)?1. Дляz∈[0,L] обозначимδ(z) функцию, для которойδ(z)=1, еслиz≧1/q иδ(z)=0, еслиz<1/q. Пустьy(z) определяется из урав ненияz= =δ(z)q ?1+y(z)q ?1, и регулярное представление \(\mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)q^{ - n} \) аргументах определя ется из следующих соотношен ий: $$x = x_0 , \varepsilon _n \left( x \right) = \delta \left( {x_n } \right), x_{n + 1} = y\left( {x_n } \right).$$ ФункцияF: [0,L]→C называе тся аддитивной, если о на представляется в вид е $$F\left( x \right) = \mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)a_n ,$$ где ε ¦a n ¦<∞. «Бесконеч ное» представление 1=εl i q ?1 числа 1 определяется с ледующим образом: еслие n (1)=1 для б есконечно многихп, т оl n =ε n (1) (n=1, 2, ...); если ? максим альный индекс, для которогоε s (1)=1, то $$l_{ks + 1} = \left\{ \begin{gathered} \varepsilon _i \left( 1 \right) \left( {k = 0, 1, 2, ...; i = 1, ..., s - 1} \right) \hfill \\ 0 \left( {i = 0; k = 1, 2, ...} \right). \hfill \\ \end{gathered} \right.$$ В более ранней работе, опубликованной в это м журнале, авторы доказали, что а ддитивная функция является неп рерывной на отрезке [0,L] тогда и только тогда, когда ра венство $$a_n = \mathop \Sigma \limits_{i = 1}^\infty l_i a_{n + 1} $$ выполняется для всехnN. В настоящей работе ра ссматриваются непре рывные функции для которых в ыполняются дополнительные усло вия видаa n =O(q ??n ) (0a n ≧0. Анализируются их свя зи с корнями функцииG(z)=1 +ε l i z i . Доказы вается, что непрерывн ая аддитивная функция и ли вляется линейной, или нигде не дифференцир уема на отрезке [0,L].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号