首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Chemically nonequilibrium flows with allowance for vibrational relaxation are investigated numerically within the framework of the hypersonic viscous shock layer equations with reference to the example of the flow in the neighborhood of the critical line of the “Buran” orbital vehicle in its motion along a re-entry trajectory. It is found that the vibrational temperatures of the molecular components differ markedly. The distinctive feature of the model in question, as compared with a model with one average vibrational temperature, is the stronger effect on the flow characteristics over the thermally stressed part of the trajectory. The models proposed in the literature for dissociation from an effective vibrational level are compared with the model for dissociation with a certain probability from all the vibrational levels. It is shown that the use of an approximation of the total dissociation constant as a function of translational temperature only may lead to a considerable variation from the results of calculations with allowance for vibrational relaxation on the basis of the equilibrium dissociation rate constant. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 138–146, March–April, 1994.  相似文献   

2.
A new, simple and physically adequate method of calculating vibrationally nonequilibrium dissociation constants is proposed on the basis of a dissociation model which takes into account the equilibrium excitation of the rotational degrees of freedom of the molecules and the nonequilibrium excitation of vibrational quantum states. This rotation-vibration-dissociation interaction model contains only the indeterminacy associated with the indeterminacy of the experimental data on the interaction potentials and the collision cross sections of the components. In the case of thermodynamic equilibrium the model gives values of the dissociation constants close to those generally accepted. The use of this model in multicomponent nonequilibrium total viscous shock layer calculations gives values for the shock detachment distance within 5% of the experimental values. The indeterminacy in the values of the vibrational energy lost by air molecules during dissociation and recovered during recombination does not lead to serious errors in the macrocharacteristics of the flow. The nonequilibrium excitation of vibrational degrees of freedom proves to be not so important in computing the macrocharacteristics of the flow as previously assumed and the existing algorithms for calculating chemically nonequilibrium flows on the assumption of thermodynamic equilibrium can be used with satisfactory accuracy for calculating the values of the heat flux, the position of the shock wave, and the temperature and pressure in the shock layer for partially dissociated and ionized air.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 166–180, November–December, 1994.  相似文献   

3.
Values of the nonequilibrium macroscopic reaction rate for a nonisothermal boundary layer of a monatomic diluent gas are calculated using a number of models for thermal dissociation of diatomic molecules — anharmonic Morse oscillators. Analysis is performed for conditions where the diffusive transfer of excited molecules has a significant effect on the population of their upper vibrational levels, which does not only amount to change in vibrational temperature. Under the joint influence of diffusive transfer of molecules, vibrational exchanges, and reactions involving vibrationally excited particles, the local vibrational distribution functions are substantially nonequilibrium. The kinetic models considered take into account the possible contribution of the energy of molecular translational and rotational degrees of freedom to the energy required to overcome the reaction threshold. The effect of multiquantum vibrational—translational exchanges on the distribution of dissociating molecules in their upper vibrational levels is taken into account approximately.  相似文献   

4.
A solution is found for the problem of steady quasi-one-dimensional air flow in a stream tube with nonequilibrium chemical reactions, ionization reactions, and nonequilibrium excitation of the vibrational degrees of freedom in the molecular components. We consider the inverse problem: for a given pressure distribution find the distributions of all the other gas-thermodynamic quantities and the streamtube sections. The use of an implicit scheme for approximating the equations makes it possible to carry out the calculations over the entire range of variation in the degree of nonequilibrium — from the frozen state to equilibrium. We discuss the nature of the variation in temperature, vibrational energies, and component concentrations along the stream tube. A numerical analysis is made of the transition to equilibrium flow.  相似文献   

5.
It was shown in [1–4] that the reflection of a sound wave or its transmission through a shock front should be accompanied by attenuation or intensification of the wave is regarded as a discontinuity. In accordance with current representations [5, 6], a shock wave includes a viscous shock and a lengthy relaxation zone. Equilibrium is established with respect to translational and rotational degrees of freedom in the viscous shock and with respect to internal degrees of freedom in the relaxation zone. The result of the interaction of the shock and sound waves is determined by the relationship between the length of the sound wave and the width of the shock wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 90–94, May–June, 1986.  相似文献   

6.
7.
This paper studies in the one-dimensional formulation the flow of a reacting gas with account for the nonequilibrium behavior of the chemical reactions; the pressure distribution along the stream filament is given. Viscosity, heat conduction, diffusion, and ionization are not taken into account. It is assumed that there is equilibrium excitation of the translational, rotational, and vibrational degrees of freedom.Several studies have already been made of nonequilibrium flows in nozzles [1–5]. It is known that in the calculation of nonequilibrium flows considerable difficulty arises in selecting the integration step in those regions where the flow is nearly equilibrium. It is found that with the use for numerical integration of the explicit difference schemes of the type of the Euler, Runge-Kutta, etc., methods the integration step for carrying out a stable calculation must be so small that the calculation becomes practically impossible. The present study proposes a method for calculating nonequilibrium flows using a single implicit difference scheme to calculate with a high degree of accuracy and a quite large step (exceeding the step in the explicit schemes by several orders) both those flow regions which are close to equilibrium and those regions where the flow deviates markedly from equilibrium. A program was compiled using this method for the M-20 electronic digital computer which permitted calculating in the one-dimensional approximation flows in nozzles with account for the nonequilibrium behavior of the chemical reactions for mixtures containing H, O, C, and N atoms.Some qualitative peculiarities of the nonequilibrium flows are demonstrated using as an example nonequilibrium air discharge. A comparison is made with experimental and theoretical results of other authors.The authors wish to thank L. F. Kuz'mina for her assistance in carrying out the present study.  相似文献   

8.
I. D. Boyd 《Shock Waves》1991,1(3):169-176
Computations are presented for the relaxation zone behind strong, one-dimensional shock waves in nitrogen. The analysis is performed with the direct simulation Monte Carlo method (DSMC). The DSMC code is vectorized for efficient use on a supercomputer. The code simulates translational, rotational and vibrational energy exchange and dissociative and recombinative chemical reactions. A new model is proposed for the treatment of three body recombination collisions in the DSMC technique which usually simulates binary collision events. The new model represents improvement over previous models in that it can be employed with a large range of chemical rate data, does not introduce into the flow field troublesome pairs of atoms which may recombine upon further collision (pseudo-particles) and is compatible with the vectorized code. The computational results are compared with existing experimental data. It is shown that the derivation of chemical rate coefficients must account for the degree of vibrational nonequilibrium in the flow. A nonequilibrium chemistry model is employed together with equilibrium rate data to compute successfully the flow in several different nitrogen shock waves.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

9.
Macroscopic equations obtained as a thin-layer version of the 13-moment Grad equations derived from kinetic considerations are used for describing the translationally nonequilibrium monatomic gas flow in a hypersonic free jet boundary layer formed in the wake behind a wedge. This model makes it possible to investigate flows with strong violations of equilibrium with respect to the translational degrees of freedom. A method of constructing the solution of this kinetically justified problem based on the solution of an analogous problem in the Navier-Stokes interpretation is proposed. It is established that for the kinetic variant of the problem considered the gas flow velocity distribution along the separating streamline in a plane orthogonal to the wedge generator coincides with the distribution obtained in solving the Navier-Stokes variant. It is found that taking into account the nonequilibrium nature of the flow with respect to the translational degrees of freedom of the gas particles has no effect on the base pressure and the wake angle.  相似文献   

10.
Some results are given of the numerical investigation into the parameters of the nonequilibrium flow of air in a viscous shock layer in the case of blunt circular cones at zero angle of attack; they are also compared with experimental data obtained during re-entry of ballistic objects into the Earth's atmosphere. The calculations were made with allowance for the nonequilibrium processes of dissociation and ionization, and also vibrational relaxation. The influence of viscosity, heat conduction, and diffusion is taken into account in the complete shock layer. The conditions on the shock wave are posed with allowance for its finite thickness. The characteristic profiles of the velocity, temperature, and electron concentration in the shock layer are given. Good agreement is obtained between the calculated and experimental data on the level and the profiles of the electron concentration. The parameters of the shock layer were determined by a method that is a natural extension of the numerical method of [1] to the case of nonequilibrium flow in a viscous shock layer. Because of this, only the main differences of the method when applied to the calculation of nonequilibrium flows of a multicomponent mixture such as dissociated and ionized air are described.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 15–20, November–December, 1979.  相似文献   

11.
The viscous shock-layer model is used to examine relaxation of rotational degrees of freedom of molecular nitrogen in flow of a rarefied gas near the stagnation flow line around a sphere. It is shown that in the strongly smeared shock-wave region the rotational degrees of freedom can exhibit substantial nonequilibrium, leading to the increase of temperature and an increase of shock-layer thickness as compared with the equilibrium values. The influence of rotational relaxation on the shock-wave structure is discussed, and boundaries are found for the flow regions when rotational relaxation plays on important role,A comparison is made between the results of numerical calculations and experimentally obtained density profiles available in the literature near the stagnation line in flow of a rarefied gas over a sphere [1, 2]. Quite good agreement is obtained between the results of the calculation and experimental data over a wide range of Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 172–175, July–August, 1977.  相似文献   

12.
The influence of vibrational relaxation on the nonlinear evolution of a large vortex structure in a shear flow of a highly nonequilibrium diatomic gas is studied. Calculations are performed using the equations of twotemperature gas dynamics for a viscous heatconducting gas. Relaxation of the temperature of vibrational levels of gas molecules to equilibrium is described by the Landau–Teller equation. The contribution of the relaxation of rotational levels is taken into account by the bulk viscosity in the stress tensor. It is shown that in the presence of only the relaxation process with no viscous dissipation, the damping of the kinetic energy of perturbations and Reynolds stresses increases by up to 10 % compared to the case of thermal equilibrium. For high (actually attainable) degrees of excitation of the vibrational mode, moderate dynamic and bulk viscosities, and a typical relaxation time comparable to flow time, the relative effect of perturbation damping reaches 15%.  相似文献   

13.
Using the Maxwell method, transfer equations describing molecular gas flows in viscous shock and hypersonic boundary layers are obtained. It is shown that, in contrast to the Navier-Stokes approximation, the kinetic model proposed makes it possible correctly to describe hypersonic flow around bodies under conditions of strong nonequilibrium of the internal and translational degrees of freedom of the gas particles.  相似文献   

14.
This paper describes the experimental and numerical investigations of unknown characteristics of the rotational nonequilibrium phenomena behind a strong shock wave in air. Experiments were carried out using a piston-driven shock tube with helium as driving gas and air as driven (test) gas, operated as a two-stage shock tube. In the experiments, emission spectra of NO were measured to evaluate the rotational temperature behind a strong shock wave. The numerical calculations use the computational code for the thermal and chemical nonequilibrium flow behind a strong shock wave developed by the present author's group, where 11 chemical species (N, O, NO, N, O, N, O, NO, N, O, e) and 48 chemical reactions of high-temperature air are considered. The thermal nonequilibrium is expressed by introducing an 8 temperature model composed of translational temperature, rotational and vibrational temperatures for N, O, NO, and electron temperature. The coupling of a rotation, vibration and dissociation (CRVD) model was incorporated to take sufficiently into account the rotational nonequilibrium. The calculations were conducted for the same conditions as the experimental ones. From the calculated flow properties, emission spectra were re-constructed using the code for computing spectra of high temperature air “SPRADIAN”. Furthermore, rotational and vibrational temperatures of NO (0,1) were determined from a curve fitting method and compared with the computed results. Received 12 September 2001 / Accepted 18 February 2002  相似文献   

15.
The shock wave structure in a diatomic gas is investigated using the direct statistical simulation (Monte-Carlo) method. The energy exchange between translational and rotational degrees of freedom (TR-exchange) is calculated by solving the dynamic problem of the interaction between rigid-rotator molecules within the framework of classical mechanics. The density profiles calculated are compared with the experimental data and on this basis the nitrogen rotational relaxation time is estimated. The possibility of using simplified intermolecular interaction models, namely, the variable-diameter sphere model employed together with a phenomenological consideration of the TR-exchange, is studied. Gasdynamic parameter profiles in the shock wave are analyzed. Simple approximations of the velocity gradient and translational and rotational temperature profiles are obtained on the basis of a parametric calculation of the shock wave structure. This makes it possible approximately to describe the gasdynamic parameter profiles in terms of elementary functions.  相似文献   

16.
The effect of the internal molecular degrees of freedom on the flow field and heat transfer in hypersonic rarefied gas flow past a cylinder or sphere is investigated using the direct statistical simulation (Monte-Carlo) method. The variable-diameter rough spherical molecule model (VRS-model) is generalized to include the case of energy exchange between the translational and vibrational degrees of freedom. The interaction between diatomic molecules with allowance for vibrational degrees of freedom is simulated as the interaction of classical or quantum-mechanical harmonic and anharmonic oscillators in the external force approximation. A model of the dissociation of a diatomic gas is proposed.  相似文献   

17.
The problem of the influence of a nonequilibrium (non–Maxwellian( distribution of translational energy over the degrees of freedom of molecules on the rate of their dissociation in a hypersonic shock wave is considered. An approximate beam—continuous medium model, which was previously applied to describe a hypersonic flow of a perfect gas, was used to study translational nonequilibrium. The degree of dissociation of diatomic molecules inside the shock–wave front, which is caused by the nonequilibrium distribution over the translational degrees of freedom, is evaluated. It is shown that the efficiency of the first inelastic collisions is determined by the dissociation rate exponentially depending on the difference in the kinetic energy of beam molecules and dissociation barrier.  相似文献   

18.
V. Yu. Kazakov 《Fluid Dynamics》2001,36(6):1004-1013
The parameters of the flow in the neighborhood of blunt bodies are investigated within the framework of the parabolized viscous shock layer model under Earth's atmosphere entry conditions for flow at angles of attack and slip. The investigation is carried out with allowance for thermal and chemical flow nonequilibrium, multicomponent diffusion, and heterogeneous catalytic reactions. The mutual influence of exchange reactions and molecular vibrational relaxation is taken into account, together with the vibrational-dissociative interaction. The effect of the flow nonequilibrium on the thermal and mechanical loadings is analyzed for the windward surface of triaxial ellipsoids.  相似文献   

19.
Direct shocks in flows of a high-temperature diatomic gas with rotational and vibrational degrees of freedom are considered. Gas-dynamic parameters and populations of molecular vibrational levels behind a shock are studied for the case of disturbance of vibrational equilibrium in an incident flow.  相似文献   

20.
高超声速三维热化学非平衡流场的数值模拟   总被引:1,自引:0,他引:1  
柳军  刘伟  曾明  乐嘉陵 《力学学报》2003,35(6):730-734
对三维高超声速热化学非平衡流场进行数值模拟,采用双温度热化学非平衡、11组元空气模型,考虑振动-离解耦合.差分格式采用沈清博士提出的“迎风型NND”格式,用熵修正方法消除了高超声速流数值模拟中的“carbuncle现象”.与LU-SGS方法结合,提高了单步计算效率和收敛性.数值模拟结果与文献结果进行了对比,并在弹道靶中进行了钢质圆球的弓形激波位置实验验证.计算结果与文献、实验的对比说明,三维热化学非平衡流计算程序可以精确地捕捉到强弓形激波,得到合理的空气动力系数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号