首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents some new ideas to understand the strange attractor fragmentation caused by grazing in non-smooth dynamic systems. The sufficient and necessary conditions for grazing bifurcations in non-smooth dynamic systems are presented. The initial sets of grazing mapping are introduced and the corresponding initial grazing manifolds are discussed. The grazing-induced fragmentation of strange attractors of chaotic motions in non-smooth dynamical systems is presented. The mathematical theory for such a fragmentation of strange attractors should be further developed.  相似文献   

2.
A methodology for the local singularity of non-smooth dynamical systems is systematically presented in this paper, and a periodically forced, piecewise linear system is investigated as a sample problem to demonstrate the methodology. The sliding dynamics along the separation boundary are investigated through the differential inclusion theory. For this sample problem, a perturbation method is introduced to determine the singularity of the sliding dynamics on the separation boundary. The criteria for grazing bifurcation are presented mathematically and numerically. The grazing flows are illustrated numerically. This methodology can be very easily applied to predict grazing motions in other non-smooth dynamical systems. The fragmentation of the strange attractors of chaotic motion will be presented in the second part of this work.  相似文献   

3.
4.
A new scenario is described for the creation of a strange attractor in discrete dynamical systems acting in metric spaces. We investigate attractors for ensembles of dynamical systems and attractors for controlled systems with programmed piecewise-constant controls taking finitely many values.  相似文献   

5.
A chaotic motion of gyrostats in resistant environment is considered with the help of well known dynamical systems with strange attractors: Lorenz, Rössler, Newton–Leipnik and Sprott systems. Links between mathematical models of gyrostats and dynamical systems with strange attractors are established. Power spectrum of fast Fourier transformation, gyrostat longitudinal axis vector hodograph and Lyapunov exponents are find. These numerical techniques show chaotic behavior of motion corresponding to strange attractor in angular velocities phase space. Cases for perturbed gyrostat motion with variable periodical inertia moments and with periodical internal rotor relative angular moment are considered; for some cases Poincaré sections areobtained.  相似文献   

6.
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the union of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an autonomous map, properties that the nonautonomous attractor inherits from the autonomous attractor are discussed. Examples from population biology are presented.  相似文献   

7.
The generation of novel chaotic funnel-shaped attractors is introduced and the analysis of related critical values is given with a proposed switching method in this paper. The underlying mechanism involves a simple three-dimensional switched system and a hysteretically switching signal. Moreover, theoretic analysis is carried out to study the attractor generation and the corresponding critical values by fully utilizing the specific structure of the non-smooth system. Based on carefully derivation, the critical values and related stability regions of the created attractors are estimated explicitly, which is usually impossible for general non-smooth dynamics. In addition, it is demonstrated by simulation that various attractor patterns are generated conveniently by adjusting suitable system parameters.  相似文献   

8.
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.  相似文献   

9.
There exist several sets having similar structure on arbitrarily small scales. Mandelbrot called such sets fractals, and defined a dimension that assigns non-integer numbers to fractals. On the other hand, a dynamical system yielding a fractal set referred to as a strange attractor is a chaotic map. In this paper, a characterization of self-similarity for attractors is attempted by means of conditional entropy.  相似文献   

10.
In this paper we study cocycle attractors, pullback attractors and uniform attractors for multi-valued non-autonomous dynamical systems. We first consider the relationship between the three attractors and find that, under suitable conditions, they imply each other. Then, for generalized dynamical systems, we find that these attractors can be characterized by complete trajectories, which implies that the uniform attractor is lifted invariant, though it has no standard invariance by definition. Finally, we study both upper and lower semi-continuity of these attractors. A weak equi-attraction method is introduced to study the lower semi-continuity, and we show with an example the advantages of this method. A reaction-diffusion system and a scalar ordinary differential inclusion are studied as applications.  相似文献   

11.
Many papers have been published recently on studies of dynamical processes in which the attracting sets appear quite strange. In this paper the question of estimating the dimension of the attractor is addressed. While more general conjectures are made here, particular attention is paid to the idea that if the Jacobian determinant of a map is greater than one and a ball is mapped into itself, then generically, the attractor will have positive two-dimensional measure, and most of this paper is devoted to presenting cases with such Jacobians for which the attractors are proved to have non-empty interior.  相似文献   

12.
In this paper, we study the asymptotic behavior of solutions for the partly dissipative lattice dynamical systems in weighted spaces. We first establish the dynamic systems on infinite lattice, and then prove the existence of the global attractor in weighted spaces by the asymptotic compactness of the solutions. It is shown that the global attractors contain traveling waves. The upper semicontinuity of the global attractor is also considered by finite-dimensional approximations of attractors for the lattice systems.  相似文献   

13.
Strange non-chaotic, strange chaotic and quasiperiodic attractors are demonstrated to exist for a system of two non-linear coupled oscillators with almost periodic excitations. For same parameter values a transition from a strange non-chaotic to a quasiperiodic attractor is presented, whereas for other parameter values a shift from the strange chaotic attractor to a quasiperiodic one is found.  相似文献   

14.
There are different non-equivalent definitions of attractors in the theory of dynamical systems. The most common are two definitions: the maximal attractor and the Milnor attractor. The maximal attractor is by definition Lyapunov stable, but it is often in some ways excessive. The definition of Milnor attractor is more realistic from the physical point of view. The Milnor attractor can be Lyapunov unstable though. One of the central problems in the theory of dynamical systems is the question of how typical such a phenomenon is. This article is motivated by this question and contains new examples of so-called relatively unstable Milnor attractors. Recently I. Shilin has proved that these attractors are Lyapunov stable in the case of one-dimensional fiber under some additional assumptions. However, the question of their stability in the case of multidimensional fiber is still an open problem.  相似文献   

15.
In this paper, we study a class of partial functional differential equations with finite delay, whose linear part is not necessarily densely defined but satisfies the Hille–Yosida condition. Using the classical theory about global attractors in infinite dimensional dynamical systems, we establish some sufficient conditions for guaranteeing the existence of a global attractor under small delays.  相似文献   

16.
In this work, we define the notions of ‘impulsive non‐autonomous dynamical systems’ and ‘impulsive cocycle attractors’. Such notions generalize (we will see that not in the most direct way) the notions of autonomous dynamical systems and impulsive global attractors in the current published literature. We also establish conditions to ensure the existence of an impulsive cocycle attractor for a given impulsive non‐autonomous dynamical system, which are analogous to the continuous case. Moreover, we prove the existence of such attractor for a non‐autonomous 2D Navier–Stokes equation with impulses, using energy estimates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper systematically presents a theory for n-dimensional nonlinear dynamics on continuous vector fields. In this paper, a different view to look into the fundamental theory in dynamics is presented. The ideas presented herein are less formal and rigorous in an informal and lively manner. The ideas may give some inspirations in the field of nonlinear dynamics. The concepts of local and global flows are introduced to interpret the complexity of flows in nonlinear dynamic systems. Further, the global tangency and transversality of flows to the separatrix surface in nonlinear dynamical systems are discussed, and the corresponding necessary and sufficient conditions for such global tangency and transversality are presented. The ε-domains of flows in phase space are introduced from the first integral manifold surface. The domain of chaos in nonlinear dynamic systems is also defined, and such a domain is called a chaotic layer or band. The first integral quantity increment is introduced as an important quantity. Based on different reference surfaces, all possible expressions for the first integral quantity increment are given. The stability of equilibriums and periodic flows in nonlinear dynamical systems are discussed through the first integral quantity increment. Compared to the Lyapunov stability conditions, the weak stability conditions for equilibriums and periodic flows are developed. The criteria for resonances in the stochastic and resonant, chaotic layers are developed via the first integral quantity increment. To discuss the complexity of flows in nonlinear dynamical systems, the first integral manifold surface is used as a reference surface to develop the mapping structures of periodic and chaotic flows. The invariant set fragmentation caused by the grazing bifurcation is discussed. The global grazing bifurcation is a key to determine the global transversality to the separatrix. The local grazing bifurcation on the first integral manifold surface in a single domain without separatrix is a mechanism for the transition from one resonant periodic flow to another one. Such a transition may occur through chaos. The global grazing bifurcation on the separatrix surface may imply global chaos. The complexity of the global chaos is measured by invariant sets on the separatrix surface. The invariant set fragmentation of strange attractors on the separatrix surface is central to investigate the complexity of the global chaotic flows in nonlinear dynamical systems. Finally, the theory developed herein is applied to perturbed nonlinear Hamiltonian systems as an example. The global tangency and tranversality of the perturbed Hamiltonian are presented. The first integral quantity increment (or energy increment) for 2n-dimensional perturbed nonlinear Hamiltonian systems is developed. Such an energy increment is used to develop the iterative mapping relation for chaos and periodic motions in nonlinear Hamiltonian systems. Especially, the first integral quantity increment (or energy increment) for two-dimensional perturbed nonlinear Hamiltonian systems is derived, and from the energy increment, the Melnikov function is obtained under a certain perturbation approximation. Because of applying the perturbation approximation, the Melnikov function only can be used for a rough estimate of the energy increment. Such a function cannot be used to determine the global tangency and transversality to the separatrix surface. The global tangency and transversality to the separatrix surface only can be determined by the corresponding necessary and sufficient conditions rather than the first integral quantity increment. Using the first integral quantity increment, limit cycles in two-dimensional nonlinear systems is discussed briefly. The first integral quantity of any n-dimensional nonlinear dynamical system is very crucial to investigate the corresponding nonlinear dynamics. The theory presented in this paper needs to be further developed and to be treated more rigorously in mathematics.  相似文献   

18.
The global asymptotic behavior of dynamical systems on compact metric spaces can be described via Morse decompositions. Their components, the so-called Morse sets, are obtained as intersections of attractors and repellers of the system. In this paper, new notions of attractor and repeller for nonautonomous dynamical systems are introduced which are designed to establish nonautonomous generalizations of the Morse decomposition. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Moreover, Morse decompositions of one-dimensional and linear systems are studied.

  相似文献   


19.
The criterion for grazing motions in a dry-friction oscillator is obtained from the local theory of non-smooth dynamical systems on the connectable and accessible domains. The generic mappings for such a dry-friction oscillator are also introduced. The sufficient and necessary conditions for grazing at the final states of mappings are expressed. The initial and final switching sets of grazing mapping, varying with system parameters, are illustrated for the grazing parametric characteristics. The initial and grazing, switching manifolds in the switching sets are defined through grazing mappings. Finally, numerical illustrations of grazing motions are very easily carried out with help of the analytical predictions. This paper provides a comprehensive investigation of grazing motions in the dry-friction oscillator for a better understanding of the grazing mechanism of such a discontinuous system. The investigation based on the local singularity theory is more intuitive and efficient than the discontinuous mapping techniques.  相似文献   

20.
We consider the dynamics of an unbalanced rubber ball rolling on a rough plane. The term rubber means that the vertical spinning of the ball is impossible. The roughness of the plane means that the ball moves without slipping. The motions of the ball are described by a nonholonomic system reversible with respect to several involutions whose number depends on the type of displacement of the center of mass. This system admits a set of first integrals, which helps to reduce its dimension. Thus, the use of an appropriate two-dimensional Poincaré map is enough to describe the dynamics of our system. We demonstrate for this system the existence of complex chaotic dynamics such as strange attractors and mixed dynamics. The type of chaotic behavior depends on the type of reversibility. In this paper we describe the development of a strange attractor and then its basic properties. After that we show the existence of another interesting type of chaos — the so-called mixed dynamics. In numerical experiments, a set of criteria by which the mixed dynamics may be distinguished from other types of dynamical chaos in two-dimensional maps is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号