首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mesoporous silica nanoparticles loaded with rhodamine B and capped with curcumin are used for the selective and sensitive fluorogenic detection of human serum albumin (HSA). The sensing mesoporous silica nanoparticles are loaded with rhodamine B, decorated with aminopropyl moieties and capped with curcumin. The nanoparticles selectively release the rhodamine B cargo in the presence of HSA. A limit of detection for HSA of 0.1 mg/mL in PBS (pH 7.4)-acetonitrile 95:5 v/v was found, and the sensing nanoparticles were used to detect HSA in spiked synthetic urine samples.  相似文献   

2.
This work reports the synthesis, characterization, and sensing behavior of a hybrid nanodevice for the detection of the potent abuse drug 25I-NBOMe. The system is based on mesoporous silica nanoparticles, loaded with a fluorescent dye, functionalized with a serotonin derivative and capped with the 5-HT2A receptor antibody. In the presence of 25I-NBOMe the capping antibody is displaced, leading to pore opening and rhodamine B release. This delivery was ascribed to 5-HT2A receptor antibody detachment from the surface due to its stronger coordination with 25I-NBOMe present in the solution. The prepared nanodevice allowed the sensitive (limit of detection of 0.6 μm ) and selective recognition of the 25I-NBOMe drug (cocaine, heroin, mescaline, lysergic acid diethylamide, MDMA, and morphine were unable to induce pore opening and rhodamine B release). This nanodevice acts as a highly sensitive and selective fluorometric probe for the 25I-NBOMe illicit drug in artificial saliva and in sweets.  相似文献   

3.
A new technique for sensing Ga(III) concentration based on polyvinyl alcohol-citrate capped gold nanoparticle– p- aminohippuric acid hybrid (or three-layer core-shell configurations) has been demonstrated. The p- aminohippuric acid capped citrate-gold nanoparticles were comfortably agglomerated in the presence of Ga(III), and the color of the reaction quickly turned from red to violet or blue. Under the detection conditions, a good linear relationship was ideally obtained between the ratio of the absorbance intensity at 620 nm to that at 520 nm (A620/A520). The linear response range, the detection, and quantification limit was 34.9–418.3 μg/L and 7.6 μg/L, and 25 μg/L, respectively. To reflect the accuracy, the developed sensing approach was evaluated against certified reference materials (TMDA 51.3 fortified water and TMDA 28.3 fortified water). This colorimetric strategy was displayed excellent selectivity for Ga(III) over other examined ions. Additionally, the colorimetric method was properly used to detect the concentrations of Ga in tap water and certified reference material samples with recoveries ranging from 95.4 to 102.0%, displaying that the colorimetric procedure could be safely used for a realistic application.  相似文献   

4.
《化学:亚洲杂志》2017,12(7):775-784
Two different acetylcholinesterase (AChE)‐capped mesoporous silica nanoparticles (MSNs), S1‐AChE and S2‐AChE , were prepared and characterized. MSNs were loaded with rhodamine B and the external surface was functionalized with either pyridostigmine derivative P1 (to yield solid S1 ) or neostigmine derivative P2 (to obtain S2 ). The final capped materials were obtained by coordinating grafted P1 or P2 with AChE′s active sites (to give S1‐AChE and S2‐AChE , respectively). Both materials were able to release rhodamine B in the presence of diisopropylfluorophosphate (DFP) or neostigmine in a concentration‐dependent manner via the competitive displacement of AChE through DFP and neostigmine coordination with the AChE‘s active sites. The responses of S1‐AChE and S2‐AChE were also tested with other enzyme inhibitors and substrates. These studies suggest that S1‐AChE nanoparticles can be used for the selective detection of nerve agent simulant DFP and paraoxon.  相似文献   

5.
An immunoadjuvant preparation (named Fraction B) was obtained from the aqueous extract of Quillaja brasiliensis leaves, and further fractionated by consecutive separations with silica flash MPLC and reverse phase HPLC. Two compounds were isolated, and their structures elucidated using a combination of NMR spectroscopy and mass spectrometry. One of these compounds is a previously undescribed triterpene saponin (Qb1), which is an isomer of QS-21, the unique adjuvant saponin employed in human vaccines. The other compound is a triterpene saponin previously isolated from Quillaja saponaria bark, known as S13. The structure of Qb1 consists of a quillaic acid residue substituted with a β-d-Galp-(1→2)-[β-d-Xylp-(1→3)]-β-d-GlcpA trisaccharide at C3, and a β-d-Xylp-(1→4)-α-l-Rhap-(1→2)-[α-l-Arap-(1→3)]-β-d-Fucp moiety at C28. The oligosaccharide at C28 was further substituted at O4 of the fucosyl residue with an acyl group capped with a β-d-Xylp residue.  相似文献   

6.
Benign prostatic hypertrophy (BPH) is an intractable chronic inflammatory disease. We studied the efficacy of two ellagitannins, namely camptothin B (1) and cornusiin A (2) that were isolated from Cornus alba (CA) for the treatment of BPH, which is a common health issue in older men. The ellagitannins (1 and 2) were evaluated on its inhibitory activities of the enzyme 5α-reductase and tumor necrosis factor (TNF)-α, its interleukin (IL)-1β, IL-6, and IL-8 production, and its anti-proliferation and apoptosis induction in prostate cells that show hypertrophy (RWPE-1 cell). In inhibition of 5α-reductase, the ellagitannins (1 and 2) showed potential effects, compared to the positive control, finasteride. In the case of IL-1β, IL-6, IL-8, and TNF-α, 1 and 2 showed good inhibitory effects as compared to the control group treated with LPS. The ellagitannins (1 and 2) were also shown to inhibit proliferation of, and induce apoptosis in, the RWPE-1 cell. These results suggest that the ellagitannins (1 and 2) may be good candidates for the treatment of BPH.  相似文献   

7.
This study aimed to investigate the chemical composition of the leaf essential oil from Ivoirian Isolona dewevrei. A combination of chromatographic and spectroscopic techniques (GC(RI), GC-MS and 13C-NMR) was used to analyze two oil samples (S1 and S2). Detailed analysis by repetitive column chromatography (CC) of essential oil sample S2 was performed, leading to the isolation of four compounds. Their structures were elucidated by QTOF-MS, 1D and 2D-NMR as (10βH)-1β,8β-oxido-cadin-4-ene (38), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (cis-germacrene D-8-ol) (52), 4-methylene-(7αH)-germacra-1(10),5-dien-8α-ol (trans-germacrene D-8-ol) (53) and cadina-1(10),4-dien-8β-ol (56). Compounds 38, 52 and 53 are new, whereas NMR data of 56 are reported for the first time. Lastly, 57 constituents accounting for 95.5% (S1) and 97.1% (S2) of the whole compositions were identified. Samples S1 and S2 were dominated by germacrene D (23.6 and 20.5%, respectively), followed by germacrene D-8-one (8.9 and 8.7%), (10βH)-1β,8β-oxido-cadin-4-ene (7.3 and 8.7), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (7.8 and 7.4%) and cadina-1(10),4-dien-8β-ol (7.6 and 7.2%). Leaves from I. dewevrei produced sesquiterpene-rich essential oil with an original chemical composition, involving various compounds reported for the first time among the main components. Integrated analysis by GC(RI), GC-MS and 13C-NMR appeared fruitful for the knowledge of such a complex essential oil.  相似文献   

8.
Polysaccharides are abundant in natural resources and perform numerous physiological functions. Polysaccharide structures often lack chromophore groups; thus, current analytical methods cannot distinguish polysaccharide metabolites in the body or polysaccharide prototypes in biological samples. Thus, the measurement of polysaccharides in blood, bodily fluid, and cell-culture medium is difficult. Our early-stage research resulted in the isolation of two homogeneous polysaccharides from Pseudostellaria heterophylla, PHP0.5MSC-F and PHPH-1-2, which have anti-hyperglycemia and insulin resistance improvement effects for type 2 diabetes. In this study, the reducing terminal sugars of PHP0.5MSC-F and PHPH-1-2 were labeled with 2-aminobenzamide (2-AB) to prepare novel fluorescent probes for HPLC-coupled fluorescence detection (HPLC-FLD). Quantitative analysis was performed in reference to T40, and the detection limit for PHP0.5MSC-F was found to be 8.84 μg/mL with a linear range of 29.45–683.28 μg/mL. In reference to T70, the detection limit for PHPH-1-2 was found to be 13.89 μg/mL with a linear range of 46.29–462.76 μg/mL. This method was used to measure the bidirectional transport of polysaccharides across caco-2 cells from apical to basolateral (AP→BL) or from basolateral to apical (BL→AP) directions and to evaluate the polysaccharide bioavailability. The drug absorption capacity was determined based on the apparent permeability coefficient (Papp), and the Papp values for the two polysaccharides were found to be greater than 1 × 10−6 cm/s, which suggests easy absorption. Regarding bidirectional transport, the AP→BL Papp values were greater than the BL→AP values; thus, PHP0.5MSC-F and PHPH-1-2 mainly underwent passive transference. The two membrane permeable polysaccharides were not P-gp efflux transporter substrates. The absorption mechanism of PHP0.5MSC-F complies with passive diffusion under a concentration gradient, whereas PHPH-1-2 mainly utilizes a clathrin-mediated endocytic pathway to enter caco-2 cells. This innovative HPLC-FLD method can help to track polysaccharide internalization in vitro and in vivo to facilitate cellular uptake and biodistribution exploration.  相似文献   

9.
Water recovery is a significant proposition for human survival and sustainable development, and we never stop searching for more efficient, easy-operating, low-cost and environmentally friendly methods to decontaminate water bodies. Herein, we combined the advantages of β-cyclodextrin (β-CD), magnetite nanoparticles (MNs), and two kinds of quaternary ammonium salts to synthesize two porous quaternary ammonium groups capped magnetic β-CD polymers (QMCDP1 and QMCDP2) to remove organic pollutants and eradicate pathogenic microorganisms effectively through a single implementation. In this setting, β-CD polymer (CDP) was utilized as the porous substrate material, while MNs endowed the materials with excellent magnetism enhancing recyclability in practical application scenarios, and the grafting of quaternary ammonium groups was beneficial for the adsorption of anionic dyes and sterilization. Both QMCDPs outperformed uncapped MCDPs in their adsorption ability of anionic pollutants, using methyl blue (MB) and orange G (OG) as model dyes. Additionally, QMCDP2, which was modified with longer alkyl chains than QMCDP1, exhibits superior bactericidal efficacy with a 99.47% removal rate for Staphylococcus aureus. Accordingly, this study provides some insights into designing a well-performed and easily recyclable adsorbent for simultaneous sterilization and adsorption of organic contaminants in wastewater.  相似文献   

10.
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.  相似文献   

11.
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.  相似文献   

12.
Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a high-priority pathogen because its infection is associated with a high mortality rate. It is urgent to search for new agents to treat such an infection. Our previous study isolated a soil bacterium (Brevibacillus sp. SPR-20), showing the highest antimicrobial activity against S. aureus TISTR 517 and MRSA strains. The present study aimed to purify and characterize anti-MRSA substances produced by SPR-20. The result showed that five active substances (P1–P5) were found, and they were identified by LC-MS/MS that provided the peptide sequences of 14–15 residues. Circular dichroism showed that all peptides contained β-strand and disordered conformations as the major secondary structures. Only P1–P4 adopted more α-helix conformations when incubated with 50 mM SDS. These anti-MRSA peptides could inhibit S. aureus and MRSA in concentrations of 2–32 μg/mL. P1 (NH2-VVVNVLVKVLPPPVV-COOH) had the highest activity and was identified as a novel antimicrobial peptide (AMP). The stability study revealed that P1 was stable in response to temperature, proteolytic enzymes, surfactant, and pH. The electron micrograph showed that P1 induced bacterial membrane damage when treated at 1× MIC in the first hour of incubation. The killing kinetics of P1 was dependent on concentration and time. Mechanisms of P1 on tested pathogens involved membrane permeability, leakage of genetic material, and cell lysis. The P1 peptide at a concentration up to 32 μg/mL showed hemolysis of less than 10%, supporting its safety for human erythrocytes. This study provides promising anti-MRSA peptides that might be developed for effective antibiotics in the post-antibiotic era.  相似文献   

13.
Vertical translocation/leaching of sulfamethoxazole (SMZ) through manure-amended sandy loam soil and significance of biochar application on SMZ retention were investigated in this study. Soil was filled in columns and amended with manure spiked with 13.75 mg kg−1 (S1), 27.5 mg kg−1 (S2), and 55 mg kg−1 (S3) of SMZ. Jujube (Ziziphus jujube L.) wood waste was transformed into biochar and mixed with S3 at 0.5% (S3-B1), 1.0% (S3-B2), and 2.0% (S3-B3) ratio. Cumulative SMZ leaching was lowest at pH 3.0, which increased by 16% and 34% at pH 5.0 and 7.0, respectively. A quicker release and translocation of SMZ from manure occurred during the initial 40 h, which gradually reduced over time. Intraparticle diffusion and Elovich kinetic models were the best fitted to leaching data. S3 exhibited the highest release and vertical translocation of SMZ, followed by S2, and S1; however, SMZ leaching was reduced by more than twofold in S3-B3. At pH 3.0, 2.0% biochar resulted in 99% reduction in SMZ leaching within 72 h, while 1.0% and 0.5% biochar applications reduced SMZ leaching to 99% within 120 and 144 h, respectively, in S3. The higher SMZ retention onto biochar could be due to electrostatic interactions, H-bonding, and π-π electron donor acceptor interactions.  相似文献   

14.
Two new spirostanol sapogenins (5β-spirost-25(27)-en-1β,2β,3β,5β-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1β,2β,3β,5β-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5β-spirost-25(27)-en-1β,3β-diol 1, (25S)-spirostan-1β,3β-diol 2, 5β-spirost-25(27)-en-1β,3β,4β,5β-tetrol 5, (25S)-spirostan-1β,3β,4β,5β-tetrol 6, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 7 and (25S)-spirostan-1β,2β,3β,4β,5β-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-galactopyranoside 9, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-arabinonoside 11, 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-galactoside 10 and 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1β,3β-diol 1 and 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity.  相似文献   

15.
Satureja pilosa and S. kitaibelii (Lamiaceae) are Balkan endemic plant species, and the composition of their essential oil (EO) is highly variable. The aim of the present study was to establish: (1) the EO variability in two populations of S. pilosa (the intrapopulation), and (2) the EO variation in S. kitaibelii between nine populations (interpopulation) from Bulgaria and two from Serbia. The EOs of two Satureja species were obtained from aboveground plant parts by hydrodistillation and were analyzed by GC/MS/FID. Overall, the EO yield on the intrapopulation level of S. pilosa varied from 0.54% to 2.15%, while the EO of S. kitaibelii varied from 0.04% to 0.43% (interpopulation). The EO of S. pilosa was found to contain thymol and carvacrol as the main constituents, with other major constituents being p-cymene and γ-terpinene. S. pilosa samples in both studied populations formed six chemical groups. The major constituents (p-cymene, terpinen-4-ol, bornyl acetate, γ-muurolene, endo-borneol, cis-β-ocimene, trans-β-ocimene, carvacrol, α-pinene, thymoquinone, geranial, geranyl acetate, spathulenol, and caryophyllene oxide) of S. kitaibelii EO were considered for grouping the populations into ten chemotypes. The present study is the first report on the interpopulation diversity of S. kitaibelii EOs in Bulgaria. It demonstrated variability of the EOs between and within the populations of S. kitaibelii from Bulgaria. This study identified promising genetic material that could be further propagated and developed into cultivars for commercial production of S. kitaibelii and S. pilosa, thereby reducing the impact of collection on wild populations.  相似文献   

16.
We report a gold nanoparticle (AuNP)-capped mesoporous silica nanoparticle (Au-MSN) platform for intracellular codelivery of an enzyme and a substrate with retention of bioactivity. As a proof-of-concept demonstration, Au-MSNs are shown to release luciferin from the interior pores of MSN upon AuNP uncapping in response to disulfide-reducing antioxidants and codeliver bioactive luciferase from the PEGylated exterior surface of Au-MSN to Hela cells. The effectiveness of luciferase-catalyzed luciferin oxidation and luminescence emission in the presence of intracellular ATP was measured by a luminometer. Overall, the chemical tailorability of the Au-MSN platform to retain enzyme bioactivity, the ability to codeliver enzyme and substrate, and the potential for imaging tumor growth and metastasis afforded by intracellular ATP- and glutathione-dependent bioluminescence make this platform appealing for intracellular controlled catalysis and tumor imaging.  相似文献   

17.
Chagas disease (CD) can be accurately diagnosed by detecting Trypanosoma cruzi in patients’ blood using polymerase chain reaction (PCR). However, parasite-derived biomarkers are of great interest for the serological diagnosis and early evaluation of chemotherapeutic efficacy when PCR may fail, owing to a blood parasite load below the method’s limit of detection. Previously, we focused on the detection of specific anti-α-galactopyranosyl (α-Gal) antibodies in chronic CD (CCD) patients elicited by α-Gal glycotopes copiously expressed on insect-derived and mammal-dwelling infective parasite stages. Nevertheless, these stages also abundantly express cell surface glycosylphosphatidylinositol (GPI)-anchored glycoproteins and glycoinositolphospholipids (GIPLs) bearing nonreducing terminal β-galactofuranosyl (β-Galf) residues, which are equally foreign to humans and, therefore, highly immunogenic. Here we report that CCD patients’ sera react specifically with synthetic β-Galf-containing glycans. We took a reversed immunoglycomics approach that entailed: (a) Synthesis of T. cruzi GIPL-derived Galfβ1,3Manpα-(CH2)3SH (glycan G29SH) and Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα-(CH2)3SH (glycan G32SH); and (b) preparation of neoglycoproteins NGP29b and NGP32b, and their evaluation in a chemiluminescent immunoassay. Receiver-operating characteristic analysis revealed that NGP32b can distinguish CCD sera from sera of healthy individuals with 85.3% sensitivity and 100% specificity. This suggests that Galfβ1,3Manpα1,2-[Galfβ1,3]Manpα is an immunodominant glycotope and that NGP32b could potentially be used as a novel CCD biomarker.  相似文献   

18.
In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 μg/mL, and in RAW 264.7 cells at 0.31 μg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 μg/mL and in RAW 264.7 cells at 150 μg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 μg/mL) and MCP-1 (10 μg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 μg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25–10 μg/mL) or FA1 (18.75–75 μg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 μg/mL, respectively. On the other hand, stimulation with 1.25 and 10 μg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.  相似文献   

19.
Satureja nabateorum (Danin and Hedge) Bräuchler is a perennial herb in the Lamiaceae family that was discovered and classified in 1998. This green herb is restricted to the mountains overlooking the Dead Sea, specifically in Jordan’s southwest, the Edom mountains, and the Tubas mountains in Palestine. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oil (EO) of air-dried and fresh S. nabateorum resulted in the identification of 30 and 42 phytochemicals accounting for 99.56 and 98.64% of the EO, respectively. Thymol (46.07 ± 1.1 and 40.64 ± 1.21%) was the major compound, followed by its biosynthetic precursors γ-terpinene (21.15 ± 1.05% and 20.65 ± 1.12%), and p-cymene (15.02 ± 1.02% and 11.51 ± 0.97%), respectively. Microdilution assay was used to evaluate the antimicrobial property of EOs against Staphylococcus aureus (ATCC 25923), clinical isolate Methicillin-Resistant Staphylococcus aureus (MRSA), Enterococcus faecium (ATCC 700221) Klebsiella pneumoniae (ATCC 13883), Proteus vulgaris (ATCC 700221), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) and Candida albicans (ATCC-90028). With a MIC of 0.135 μg/mL, the EOs has the most potent antibacterial action against K. pneumonia. Both EOs display good antifungal efficacy against C. albicans, with a MIC value of 0.75 μg/mL, which was better than that of Fluconazole’s (positive control, MIC = 1.56 μg/mL). The antioxidant capacity of EOs extracted from air-dried and fresh S. nabateorum was determined using the DPPH assay, with IC50 values of 4.78 ± 0.41 and 5.37 ± 0.40 μg/mL, respectively. The tested EOs showed significant cytotoxicity against Hela, HepG2, and COLO-205 cells, with IC50 values ranging from 82 ± 0.98 to 256 ± 1.95 μg/mL. The current work shows there is a possibility to use the S. nabateorum EOs for various applications.  相似文献   

20.
Herein, a method based on selective piazselenol formation is applied for total selenium determination in biofortified Allium species. Piazselenol is formed by reacting Se(IV) with an aromatic diamine, namely 4-nitro-1,2-phenylenediamine, in acidic medium. Samples were digested in a nitric acid/hydrogen peroxide open system, followed by selenate reduction in hydrochloric acid. Reaction conditions were optimized in terms of pH, temperature, reaction time, and other auxiliary reagents for interference removal, namely, EDTA and hydroxylamine. For the extraction of the selectively formed 4-nitro-piazselenol, micro-solid-phase extraction (μSPE) was applied, and the analysis and detection of the corresponding complex was performed by HPLC coupled with DAD. An external standard calibration curve was developed (R2 = 0.9994) with good sensitivity, and was used to calculate the total selenium content from several Allium plants material, with good intermediate precision (RSD% < 16%). The accuracy of the method was evaluated using both, a comparison with an accepted reference method from our previously published data, as well as three certified reference material with recoveries between 84–126%. The limit of detection was determined to be 0.35 μg/g (in solids) and 1.1 μg/L (in solution), while the limit of quantification was 1.07 μg/g and 3.4 μg/L (in solution). Using the proposed method, selenium content can be quickly and accurately determined in several types of samples. In addition, this study present experimental conditions for overcoming the interferences that might be encountered in selenium determination using piazselenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号