首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first part of this work, the local singularity of non-smooth dynamical systems was discussed and the criteria for the grazing bifurcation were presented mathematically. In this part, the fragmentation mechanism of strange attractors in non-smooth dynamical systems is investigated. The periodic motion transition is completed through grazing. The concepts for the initial and final grazing, switching manifolds are introduced for six basic mappings. The fragmentation of strange attractors in non-smooth dynamical systems is described mathematically. The fragmentation mechanism of the strange attractor for such a non-smooth dynamical system is qualitatively discussed. Such a fragmentation of the strange attractor is illustrated numerically. The criteria and topological structures for the fragmentation of the strange attractor need to be further developed as in hyperbolic strange attractors. The fragmentation of the strange attractors extensively exists in non-smooth dynamical systems, which will help us better understand chaotic motions in non-smooth dynamical systems.  相似文献   

2.
This paper presents the switchability of a flow from one domain into another one in the periodically forced, discontinuous dynamical system. The inclined line boundary in phase space is used for the dynamical system to switch. The normal vector field product for flow switching on the separation boundary is introduced. The passability condition of a flow to the separation boundary is achieved through such a normal vector field product, and the sliding and grazing conditions to the separation boundary are presented as well. Using mapping structures, periodic motions in such a discontinuous system are predicted analytically, and the corresponding local stability and bifurcation analysis are carried out. With the analytical conditions of grazing and sliding motions, the parameter maps of specific motions are developed. Illustrations of periodic and chaotic motions are given, and the normal vector fields are presented to show the analytical criteria. This investigation may help one better understand the sliding mode control. The methodology presented in this paper can be applied to discontinuous, nonlinear systems.  相似文献   

3.
In this paper, sliding and transversal motions on the boundary in the periodically driven, discontinuous dynamical system is investigated. The simple inclined straight line boundary in phase space is considered as a control law for such a dynamical system to switch. The normal vector field for a flow switching on the separation boundary is adopted to develop the analytical conditions, and the corresponding transversality conditions of a flow to the boundary are obtained. The conditions of sliding and grazing flows to the separation boundary are presented as well. Using mapping structures, periodic motions of such a discontinuous system are predicted, and the corresponding local stability and bifurcation analysis of the periodic motion are carried out. Numerical illustrations of periodic motions with and without sliding on the boundary are given. The local stability analysis cannot provide the proper prediction of the sliding and grazing motions in discontinuous dynamical systems. Therefore, the normal vector fields of periodic flows are presented, and the normal vector fields on the switching boundary points give the analytical criteria for sliding and transversality of motions.  相似文献   

4.
This paper presents some new ideas to understand the strange attractor fragmentation caused by grazing in non-smooth dynamic systems. The sufficient and necessary conditions for grazing bifurcations in non-smooth dynamic systems are presented. The initial sets of grazing mapping are introduced and the corresponding initial grazing manifolds are discussed. The grazing-induced fragmentation of strange attractors of chaotic motions in non-smooth dynamical systems is presented. The mathematical theory for such a fragmentation of strange attractors should be further developed.  相似文献   

5.
In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.  相似文献   

6.
The G-functions for discontinuous dynamical systems are introduced to investigate singularity in discontinuous dynamical systems. Based on the new G-function, the switchability of a flow from a domain to an adjacent one is discussed. Further, the full and half sink and source, non-passable flows to the separation boundary in discontinuous dynamical systems are discussed. A flow to the separation boundary in a discontinuous dynamical system can be passable or non-passable. Therefore, the switching bifurcations between the passable and non-passable flows are presented. Finally, the first integral quantity increment for discontinuous dynamical systems is given instead of the Melnikov function to develop the iterative mapping relations.  相似文献   

7.
The criterion for grazing motions in a dry-friction oscillator is obtained from the local theory of non-smooth dynamical systems on the connectable and accessible domains. The generic mappings for such a dry-friction oscillator are also introduced. The sufficient and necessary conditions for grazing at the final states of mappings are expressed. The initial and final switching sets of grazing mapping, varying with system parameters, are illustrated for the grazing parametric characteristics. The initial and grazing, switching manifolds in the switching sets are defined through grazing mappings. Finally, numerical illustrations of grazing motions are very easily carried out with help of the analytical predictions. This paper provides a comprehensive investigation of grazing motions in the dry-friction oscillator for a better understanding of the grazing mechanism of such a discontinuous system. The investigation based on the local singularity theory is more intuitive and efficient than the discontinuous mapping techniques.  相似文献   

8.
Based on the analysis of a two-degree-of-freedom plastic impact oscillator, we introduce a three-dimensional map with dynamical variables defined at the impact instants. The non-linear dynamics of the vibro-impact system is analyzed by using the Poincaré map, in which piecewise property and singularity are found to exist. The piecewise property is caused by the transitions of free flight and sticking motions of two masses immediately after the impact, and the singularity of map is generated via the grazing contact of two masses and corresponding instability of periodic motions. These properties of the map have been shown to exhibit particular types of sliding and grazing bifurcations of periodic-impact motions under parameter variation. Simulations of the free flight and sticking solutions are carried out, and regions of existence and stability of different impact motions are therefore presented in (δω) plane of dimensionless clearance δ and frequency ω. The influence of non-standard bifurcations on dynamics of the vibro-impact system is elucidated accordingly.  相似文献   

9.
We investigate complex dynamics occurring in a non-smooth model of a Jeffcott rotor with a bearing clearance. A bifurcation analysis of the rotor system is carried out by means of the software TC-HAT [25], a toolbox of AUTO 97 [6] allowing path-following and detection of bifurcations of periodic trajectories of non-smooth dynamical systems. The study reveals a rich variety of dynamics, which includes grazing-induced fold and period-doubling bifurcations, as well as hysteresis loops produced by a cusp singularity. Furthermore, an analytical expression predicting grazing incidences is derived.  相似文献   

10.
研究了具有双侧弹性约束的单自由度悬臂梁系统擦边诱导的非光滑动力学行为.首先,基于弹性碰撞悬臂梁的动力学方程和擦边点的定义,分析了双侧擦边周期运动的存在性条件.其次,选取零速度的Poincaré截面,推导了双侧擦边轨道附近带参数的高阶不连续映射.然后,结合光滑流映射和高阶不连续映射建立了新的复合分段范式映射.最后,将基于低阶范式映射和高阶范式映射得到的分岔图进行对比,分析验证了高阶范式映射的有效性,并通过数值仿真进一步揭示了弹性碰撞悬臂梁的擦边动力学.  相似文献   

11.
ABSTRACT

In this paper, a mathematical model is presented to numerically simulate the dynamical responses in a multi-cable suspension platform taking into account the slack cables and guiding devices. The state change of the cable (slack versus tensioned) is considered and is described mathematically by a complementary condition equation, and the interactions between the guiding wheels and the shaft wall are described by the Heaviside step function. The Lagrange’s equation with constraints is used to derive the dynamic equations of the system, and a non-smooth generalized-α algorithm for non-smooth phenomena of multibody dynamics is applied to numerically solve the equations. The simulation results have shown the dynamic responses of the platform and the cable tension characters when different cables are excited by different longitudinal excitations. Moreover, the results have illustrated how the cable tension differences may affect the pressure on the shaft wall applied by the guiding devices.  相似文献   

12.
In paper, the sliding dynamics on the separation boundary is discussed based on the set-valued vector field theory. From vector fields in the neighborhood of a specific separation boundary, the passability of the flow from the one domain into another one is further discussed. The switching bifurcation conditions from the passable boundary to the non-passable boundary are developed. The sliding flow fragmentation on the separation boundary surface is also presented. The normal vector product field function is introduced to determine the switching bifurcation and sliding fragmentation.  相似文献   

13.
The synchronization problem of two different dynamical systems is considered by employing mode decomposition approach in this paper. Synchronization of non-identical coupled dynamical systems with non-chaotic attractors, i.e., equilibria, periodic and quasi-periodic solutions, is investigated analytically and numerically. Some results are obtained by this method. Some examples, supported by numerical simulation, are presented to illustrate the conciseness and effectiveness of the approach.  相似文献   

14.
Non-smooth modal analysis is an extension of modal analysis to non-smooth systems, prone to unilateral contact conditions for instance. The problem of a one-dimensional bar subject to unilateral contact on its boundary has been previously investigated numerically and the corresponding spectrum of vibration could be partially explored. In the present work, the non-smooth modal analysis of the above system is reformulated as a set of functional equations through the use of both d’Alembert solution to the wave equation and the method of steps for Neutral Delay Differential Equations. The system features a strong internal resonance condition and it is established that irrational and rational periods of vibration should be carefully distinguished. For irrational periods, it was previously proven that the displacement field of the non-smooth modes of vibration is characterized with piecewise-linear functions in space and time and such a motion is unique for a prescribed energy. However, for rational periods, which are the subject of this work, new periodic solutions are found analytically. Findings consist of families of iso-periodic solutions with piecewise-smooth displacement fields in space and time and continua of piecewise-smooth periodic solutions of the same energy and frequency.  相似文献   

15.
In this article some qualitative and geometric aspects of non-smooth dynamical systems theory are discussed. The main aim of this article is to develop a systematic method for studying local (and global) bifurcations in non-smooth dynamical systems. Our results deal with the classification and characterization of generic codimension-2 singularities of planar Filippov Systems as well as the presentation of the bifurcation diagrams and some dynamical consequences.  相似文献   

16.
This paper deals with the design of a robust adaptive control scheme for chaos suppression of a class of chaotic systems. We assume that model uncertainties and external disturbances disturb the system’s dynamics. The bounds of both model uncertainties and external disturbances are assumed to be unknown in advance. Moreover, it is assumed that the nonlinear terms of the chaotic system dynamics are unknown bounded. Based on the global boundedness feature of the chaotic systems’ trajectories, a simple one input adaptive sliding mode control approach is proposed to suppress the chaos of the uncertain chaotic system. Furthermore, using a dynamical sliding manifold the discontinuous sign function in the control input is diverted to the first derivative of the control input to eliminate the chattering. Finally, the robustness of the proposed approach is mathematically proved and numerically illustrated.  相似文献   

17.
该文建立了一类由Allee效应诱导的非光滑Filippov切换系统.运用Filippov系统的定性分析方法,从理论上研究了系统的滑动区域、滑动模态和各类平衡点的存在性.同时用数值方法研究了系统的滑动模态分支、边界焦点分支及全局动力学行为.研究发现:Allee效应的强度可使种群的动态不稳定,不利于濒危生物种群的管理.  相似文献   

18.
研究了同时满足任意速度边界条件和速度不可压条件的Navier-Stokes方程最优动力系统的建模方法.通过对方柱绕流问题的最优动力系统的建模与分析,发现该最优动力系统的动力学特性为极限环.同时,该最优动力系统仅使用了三个最优基函数就很好地描述了所有主要的流场特征和该问题的动力学特性,故满足任意速度边界条件和速度不可压条件Navier-Stokes方程最优动力系统的建模方法,能够用最少的基函数最大限度地描述复杂流体问题及其动力学特性.  相似文献   

19.
This paper systematically presents a theory for n-dimensional nonlinear dynamics on continuous vector fields. In this paper, a different view to look into the fundamental theory in dynamics is presented. The ideas presented herein are less formal and rigorous in an informal and lively manner. The ideas may give some inspirations in the field of nonlinear dynamics. The concepts of local and global flows are introduced to interpret the complexity of flows in nonlinear dynamic systems. Further, the global tangency and transversality of flows to the separatrix surface in nonlinear dynamical systems are discussed, and the corresponding necessary and sufficient conditions for such global tangency and transversality are presented. The ε-domains of flows in phase space are introduced from the first integral manifold surface. The domain of chaos in nonlinear dynamic systems is also defined, and such a domain is called a chaotic layer or band. The first integral quantity increment is introduced as an important quantity. Based on different reference surfaces, all possible expressions for the first integral quantity increment are given. The stability of equilibriums and periodic flows in nonlinear dynamical systems are discussed through the first integral quantity increment. Compared to the Lyapunov stability conditions, the weak stability conditions for equilibriums and periodic flows are developed. The criteria for resonances in the stochastic and resonant, chaotic layers are developed via the first integral quantity increment. To discuss the complexity of flows in nonlinear dynamical systems, the first integral manifold surface is used as a reference surface to develop the mapping structures of periodic and chaotic flows. The invariant set fragmentation caused by the grazing bifurcation is discussed. The global grazing bifurcation is a key to determine the global transversality to the separatrix. The local grazing bifurcation on the first integral manifold surface in a single domain without separatrix is a mechanism for the transition from one resonant periodic flow to another one. Such a transition may occur through chaos. The global grazing bifurcation on the separatrix surface may imply global chaos. The complexity of the global chaos is measured by invariant sets on the separatrix surface. The invariant set fragmentation of strange attractors on the separatrix surface is central to investigate the complexity of the global chaotic flows in nonlinear dynamical systems. Finally, the theory developed herein is applied to perturbed nonlinear Hamiltonian systems as an example. The global tangency and tranversality of the perturbed Hamiltonian are presented. The first integral quantity increment (or energy increment) for 2n-dimensional perturbed nonlinear Hamiltonian systems is developed. Such an energy increment is used to develop the iterative mapping relation for chaos and periodic motions in nonlinear Hamiltonian systems. Especially, the first integral quantity increment (or energy increment) for two-dimensional perturbed nonlinear Hamiltonian systems is derived, and from the energy increment, the Melnikov function is obtained under a certain perturbation approximation. Because of applying the perturbation approximation, the Melnikov function only can be used for a rough estimate of the energy increment. Such a function cannot be used to determine the global tangency and transversality to the separatrix surface. The global tangency and transversality to the separatrix surface only can be determined by the corresponding necessary and sufficient conditions rather than the first integral quantity increment. Using the first integral quantity increment, limit cycles in two-dimensional nonlinear systems is discussed briefly. The first integral quantity of any n-dimensional nonlinear dynamical system is very crucial to investigate the corresponding nonlinear dynamics. The theory presented in this paper needs to be further developed and to be treated more rigorously in mathematics.  相似文献   

20.
In this paper, the dynamics of an inclined impact oscillator under periodic excitation are investigated using the flow switchability theory of the discontinuous dynamical systems. Different domains and boundaries for such system are defined according to the impact discontinuity. Based on above domains and boundaries, the analytical conditions of the stick motions and grazing motions for the inclined impact oscillator are obtained mathematically, from which it can be seen that such oscillator has more complicated and rich dynamical behaviors. The numerical simulations are given to illustrate the analytical results of complex motions, and several period-1 motions period-2 motion and chaotic motion of the ball in the inclined impact oscillator are also presented. There are more theories about such impact pair to be discussed in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号